Optimization of physicochemical properties of pyrrolidine GPR40 AgoPAMs results in a differentiated profile with improved pharmacokinetics and reduced...

Basic Information

ID: ALA5257080

Journal: Bioorg Med Chem

Title: Optimization of physicochemical properties of pyrrolidine GPR40 AgoPAMs results in a differentiated profile with improved pharmacokinetics and reduced off-target activities.

Authors: Jurica EA, Wu X, Williams KN, Haque LE, Rampulla RA, Mathur A, Zhou M, Cao G, Cai H, Wang T, Liu H, Xu C, Kunselman LK, Antrilli TM, Hicks MB, Sun Q, Dierks EA, Apedo A, Moore DB, Foster KA, Cvijic ME, Panemangalore R, Khandelwal P, Wilkes JJ, Zinker BA, Robertson DG, Janovitz EB, Galella M, Li YX, Li J, Ramar T, Jalagam PR, Jayaram R, Whaley JM, Barrish JC, Robl JA, Ewing WR, Ellsworth BA.

Abstract: GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.

CiteXplore: 37030194

DOI: 10.1016/j.bmc.2023.117273

Patent ID: