Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.
Enzyme Assay: The reactions were carried out in a 96-well microplate for fluorometry in a 50 μl reaction volume. After the deacetylation reaction, Fluor-de-Lys-Developer (BioMol Cat. # KI-105) was added to each well to digest the deacetylated substrate, thus producing the fluorescent signal. The reaction was allowed to develop for 45 minutes at 30° C. with 5% CO2; then the fluorescent signal was measured with an excitation wavelength at 360 nm and an emission wavelength at 460 nm in a microplate-reading fluorometer (GeminiXS; Molecular Devices, Sunnyvale, Calif.). A curve of Deacetylated Standard (Biomol, Cat. # KI-142; made from 100 μM with 1:2 dilution and 10-doses, 6 μl) allowed the conversion of fluorescent signal into micromoles of deacetylated product.