EGF Signaling: Tracking the path of Cancer


The epidermal growth factor (EGF) family is a group of structurally related proteins that regulate cell proliferation, migration and differentiation through tyrosine kinase receptors on target cells. EGF receptors have a cytoplasmic tyrosine kinase domain, a transmembrane domain, and an extracellular domain that binds to EGF. Binding of the ligand to the EGF receptor results in dimerization, autophosphorylation, and activation. Once activated, EGF receptors transmit intracellular signals through the phosphorylation of several proteins.


Activation of Ras by EGF receptors is an important component of EGF signaling. The guanine nucleotide exchange factor SOS activates Ras, which in turn triggers the mitogen-activated protein (MAP) kinase pathway. MAP kinases phosphorylate transcription factors such as activator protein 1 (AP-1; Fos-Jun dimer) and Elk-1, leading to cell growth and development. Phosphorylation of Janus kinase (JAK) by EGFR leads to activation of transcriptional protein signal transducers and activators (STATs), ultimately leading to cell growth and differentiation. Another key aspect of EGF signaling involves the phospholipase c-γ1 (PLCγ1), which cleaves PIP2 into IP3 and DAG. IP3 production leads to ER calcium release, whereas DAG promotes protein kinase C (PKC) activation. PKC in turn phosphorylates and activates the transcription factor Elk-1, leading to cell proliferation. Mutations in EGFR are known to affect its expression or activity, making EGFR an important drug target.


This pathway highlights an important component of EGF signaling.


Emphasis on epidermal growth factor signaling pathway

Gene Symbol

Name

Cellular Functions

Disease Associations

Subcellular Locations

Upstream Regulators

Binding Partners

Downstream Interactors

Antibodies

Small Molecules

STAT3

signal transducer and activator of transcription 3 (acute-phase response factor)

proliferation

apoptosis

expression in

transformation

differentiation

tumorigenesis

obesity

enterocolitis

Crohn’s Disease

hyperphagia

nucleus

cytoplasm

focal adhesions

nuclear foci

plasma membrane

IL6

IL10

IL2

IL21

Interferon Alpha

FOS

EGFR

PRKCD

DIRAS3

IL2RB

TERT

IL10

HIF1A

CDKN1A

SOCS3

Anti-STAT3 antibody produced in goat

 

EGFR

epidermal growth factor receptor

proliferation
apoptosis
migration
transformation survival

cancer
tumorigenesis
neoplasia
psoriasis
endometriosis

cell surface
plasma membrane
nucleus
cytoplasm
caveolae

EGF
TNF
CBL
lysophosphatidic acid
HBEGF

EGF
AXL
GRB2
CBL
SRC

Mapk
MAPK1
Akt
Erk1/2
MAPK3

Monoclonal Anti-EGF Receptor antibody produced in mouse

Inhibitor:

CP-380736

c-Raf

v-raf-1 murine leukemia viral oncogene homolog 1

transformation
proliferation
apoptosis
cell cycle progression
cell death

transformation proliferation
apoptosis
cell cycle progression
cell death

cytoplasm
nucleus
perinuclear region
plasma membrane
filamentous network

EGF
TP53
JAK1
OSM
HRAS

HRAS
YWHAZ
MAP2K1
YWHAB
RB1

MAPK1
RB1
HMGA2
MAP2K1
Mapk

Monoclonal Anti-Raf-1/c-Raf antibody produced in mouse

GW5074

JNK1

mitogen-activated protein kinase 8

apoptosis
cell death
proliferation
survival
differentiation

tumorigenesis
hypertrophy
insulin resistance
cancer
heart failure

nucleus
cytoplasm
focal adhesions
plasma membrane
mitochondria

TNF
EGF
IL1B
EGFR
IGF1

JUN
MAPK8IP1
MAP2K4
MAP2K7
THRB

CDKN1B
JUN
APP
AP-1
MAP3K11

Monoclonal Anti-JNK antibody produced in mouse

Inhibitor:

SP600125

c-Jun

jun proto-oncogene

apoptosis
proliferation
transformation
expression in cell death

tumorigenesis
cancer
neoplasia
Alzheimer’s Disease
dedifferentiation

nucleus
cytoplasm
perinuclear region
Golgi apparatus
apical processes

 

TNF
IL1B
beta-estradiol
TGFB1
lipopolysaccharide

FOS
PTGS2
MAPK8
TAF1
ATF2

 

HIF1A
SPP1
IL6
IL8
ESR2

Anti-JUN(Ab-91) antibody produced in rabbit

 

PKCα

protein kinase C, alpha

apoptosis
proliferation
activation in
migration
phosphorylation in

neurodegenerative disease
diabetes
rheumatoid arthritis
malignant neoplasm
cardiomyopathy

cytoplasm nucleus
plasma membrane
principal piece
cytoskeleton

phosphatidylserine
EGF
beta-estradiol
15(S)-HETE
D-glucose

ITGB1
AKAP12
EGFR
CAV1
SELL

Erk1/2
APP
PDE3A
MAPK1
IGF2

Monoclonal Anti-PRKCA antibody produced in mouse

Inhibitor: K-252a

STAT1

signal transducer and activator of transcription 1, 91kDa

apoptosis
expression in
proliferation
response
differentiation

infection
tumorigenesis
pneumonia
cancer
fibrosis

nucleus
cytoplasm
mitochondria
neuromuscular
junctions

IFNG
Interferon Alpha
IFNA2
IL6
IFNB1

EIF2AK2
IFNGR1
FOS
STAT2
PIN1

IRF1
CDKN1A
IRF7
CASP1
CD40

Anti-STAT1(Ab-701) antibody produced in rabbit

 

EGF

epidermal growth factor

proliferation
migration
apoptosis
growth
activation in

Alzheimer’s Disease
diabetes mellitus
polycystic kidney disease
schizophrenia
cancer

apical membrane
basolateral membrane
cell surface
Golgi apparatus
clathrin-coated
vesicles

ERBB2
ERBB3
ADAM10
CHUK
PI4KA

EGFR
ERBB3
ERBB2
PIK3R2
TAT

EGFR
MAPK1
MAPK3
FLT1
Erk1/2

Monoclonal Anti-Epidermal Growth Factor antibody produced in mouse

Inhibitor: Suramin sodium salt

GRB2

growth factor receptor-bound protein 2

growth
proliferation
differentiation
signaling
transformation

Crohn’s disease
leiomyomatosis
cardiac fibrosis
hypertrophy
uterine cancer

centrosome
cytosol
perinuclear region
plasma membrane
axons

F2
EGF
Bcr
IGF1
SHC1

 

SHC1
CBL
SOS1
EGFR
GAB1

 

MAPK3
EGFR
ERBB2
RAF1
CBL

 

Anti-GRB2 antibody produced in goat

 

MEK1

mitogen-activated protein kinase kinase1

apoptosis
proliferation
transformation
differentiation
migration

tumorigenesis
neoplasia
hypertrophy
cardiofaciocutaneous
syndrome
hyperalgesia

cytoplasm
midbody
nucleus
centrosome
mitotic spindle

EGF
LEF
RAF1v RAC1
TNF

MAPK1
RAF1
MAPK3
PEBP4
KSR1

MLANA
MAPK1
DCT
SILV
TYRP1

Anti-MEK1 antibody produced in rabbit

Inhibitor:

PD98,059

hRas

v-Ha-ras Harvey rat sarcoma viral oncogene homolog

transformation
proliferation
growth
apoptosis
senescence

tumorigenesis
cancer
neoplasia
papillomatosis
neurodegeneration

nucleus
plasma membrane
Golgi apparatus
cytoplasm
lamellipodia

Cd3
CD28
AXIN1
FTase
IL6

RAF1
RALGDS
RIN1
Blnk
Raf

reactive oxygen
species
CDKN1A
MAPK1
Erk1/2
Mapk

Anti-RASH,N-Terminal antibody produced in rabbit

Antagonist: Erastin

c-Fos

FBJ murine osteosarcoma viral oncogene homolog

transformation
apoptosis
proliferation
expression in
growth

cancer
rheumatoid arthritis
endometriosis
neoplasia
seizures

nucleus
cytoplasm
perinuclear region
Golgi apparatus
cell periphery

beta-estradiol
TNF
IL1B
EGF
ESR2

JUN
STAT3
PTGS2
SRF
IL8

IL6
CSF2
ESR2
IL8
CFLAR

Anti-FOS antibody produced in rabbit



References

1. Corbalan-Garcia S, Margarit SM, Galron D, Yang S, Bar-Sagi D. 1998. Regulation of Sos Activity by Intramolecular Interactions. Mol. Cell. Biol.. 18(2):880-886. https://doi.org/10.1128/mcb.18.2.880

2. Russell M, Lange-Carter CA, Johnson GL. 1995. Direct Interaction between Ras and the Kinase Domain of Mitogen-activated Protein Kinase Kinase Kinase (MEKK1). Journal of Biological Chemistry. 270(20):11757-11760. https://doi.org/10.1074/jbc.270.20.11757

3. Ackerman P, Glover CV, Osheroff N. 1990. Stimulation of casein kinase II by epidermal growth factor: relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit.. Proceedings of the National Academy of Sciences. 87(2):821-825. https://doi.org/10.1073/pnas.87.2.821

4. Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H, Rustgi AK. 2004. EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. American Journal of Physiology-Gastrointestinal and Liver Physiology. 287(6):G1227-G1237. https://doi.org/10.1152/ajpgi.00253.2004

5. Baker SJ, Kerppola TK, Luk D, Vandenberg MT, Marshak DR, Curran T, Abate C. 1992. Jun is phosphorylated by several protein kinases at the same sites that are modified in serum-stimulated fibroblasts.. Mol. Cell. Biol.. 12(10):4694-4705. https://doi.org/10.1128/mcb.12.10.4694

6. Takekawa M, Tatebayashi K, Saito H. 2005. Conserved Docking Site Is Essential for Activation of Mammalian MAP Kinase Kinases by Specific MAP Kinase Kinase Kinases. Molecular Cell. 18(3):295-306. https://doi.org/10.1016/j.molcel.2005.04.001

7. Chong M, Barritt G, Crouch M. 2004. Insulin potentiates EGFR activation and signaling in fibroblasts. Biochemical and Biophysical Research Communications. 322(2):535-541. https://doi.org/10.1016/j.bbrc.2004.07.150

8. Krug AW, Schuster C, Gassner B, Freudinger R, Mildenberger S, Troppmair J, Gekle M. 2002. Human Epidermal Growth Factor Receptor-1 Expression Renders Chinese Hamster Ovary Cells Sensitive to Alternative Aldosterone Signaling. Journal of Biological Chemistry. 277(48):45892-45897. https://doi.org/10.1074/jbc.m208851200

9. Lim CP, Cao X. 1999. Serine Phosphorylation and Negative Regulation of Stat3 by JNK. Journal of Biological Chemistry. 274(43):31055-31061. https://doi.org/10.1074/jbc.274.43.31055

10. Diakonova M, Payrastre B, van Velzen AG, Hage W, van Bergen en Henegouwen PM, Boonstra J, Cremers F, Humbel B. 1995. Epidermal growth factor induces rapid and transient association of phospholipase C-gamma 1 with EGF-receptor and filamentous actin at membrane ruffes of A431 cells.. J Cell Sci..(108):2499–2509.

11. Eldar H, Zisman Y, Ullrich A, Livneh E. 1990. Overexpression of protein kinase C alpha-subtype in Swiss/3T3 fibroblasts causes loss of both high and low affinity receptor numbers for epidermal growth factor.. Journal of Biological Chemistry. 265(22):13290-13296. https://doi.org/10.1016/s0021-9258(19)38297-3

12. Weston CR, Wong A, Hall JP, Goad MEP, Flavell RA, Davis RJ. 2004. The c-Jun NH2-terminal kinase is essential for epidermal growth factor expression during epidermal morphogenesis. Proceedings of the National Academy of Sciences. 101(39):14114-14119. https://doi.org/10.1073/pnas.0406061101

13. Carpenter G, Cohen S. 1990. Epidermal growth factor.. Journal of Biological Chemistry. 265(14):7709-7712. https://doi.org/10.1016/s0021-9258(19)38983-5

14. Hu, Bowtell D. 1996. Sos1 rapidly associates with Grb2 and is hypophosphorylated when complexed with the EGF receptor after EGF stimulation. Oncogene.. 12(9):1865–72.

15. Ueno H, Sasaki K, Miyagawa K, Honda H, Mitani K, Yazaki Y, Hirai H. 1997. Antisense Repression of Proto-oncogene c-Cbl Enhances Activation of the JAK-STAT Pathway but Not the Ras Pathway in Epidermal Growth Factor Receptor Signaling. Journal of Biological Chemistry. 272(13):8739-8743. https://doi.org/10.1074/jbc.272.13.8739

16. Cummins AB, Palmer C, Mossman BT, Taatjes DJ. 2003. Persistent Localization of Activated Extracellular Signal-Regulated Kinases (ERK1/2) Is Epithelial Cell-Specific in an Inhalation Model of Asbestosis. The American Journal of Pathology. 162(3):713-720. https://doi.org/10.1016/s0002-9440(10)63867-9

17. Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T, Mikoshiba K. 1992. Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster.. Journal of Biological Chemistry. 267(23):16613-16619. https://doi.org/10.1016/s0021-9258(18)42047-9

18. Mahimainathan L, Ghosh-Choudhury N, Venkatesan BA, Danda RS, Choudhury GG. 2005. EGF stimulates mesangial cell mitogenesis via PI3-kinase-mediated MAPK-dependent and AKT kinase-independent manner: involvement of c-fos and p27Kip1. American Journal of Physiology-Renal Physiology. 289(1):F72-F82. https://doi.org/10.1152/ajprenal.00277.2004

19. Xia Y, Makris C, Su B, Li E, Yang J, Nemerow GR, Karin M. 2000. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proceedings of the National Academy of Sciences. 97(10):5243-5248. https://doi.org/10.1073/pnas.97.10.5243

20. Chen D, Davis JS. 2003. Epidermal growth factor induces c-fos and c-jun mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine luteal cells. Molecular and Cellular Endocrinology. 200(1-2):141-154. https://doi.org/10.1016/s0303-7207(02)00379-9


Aladdin:https://www.aladdinsci.com