Malonyl coenzyme A lithium salt - ≥90% (HPLC), high purity , CAS No.108347-84-8

  • ≥90%(HPLC)
Item Number
M463170
Grouped product items
SKUSizeAvailabilityPrice Qty
M463170-1mg
1mg
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$74.90
M463170-5mg
5mg
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$296.90
M463170-10mg
10mg
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$534.90
View related series
Lithium

Basic Description

SynonymsCID 16219642 | AKOS030255405 | DTXSID70585218 | Malonyl coenzyme A lithium salt | PUBCHEM_16219642
Specifications & Purity≥90% (HPLC)
Storage TempStore at -20°C
Shipped InIce chest + Ice pads
Product Description

Description

Malonyl coenzyme A lithium salt has been used:in Krebs Ringer bicarbonate medium for preincubation of trypsinized and re-suspended fibroblast for fatty acid oxidation assayin HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer used for scintillation proximity assay for fatty acid synthaseas an internal standard in the reaction mixture used for succinyl-CoA ligase assay

Names and Identifiers

INCHI InChI=1S/C24H38N7O19P3S.Li/c1-24(2,19(37)22(38)27-4-3-13(32)26-5-6-54-15(35)7-14(33)34)9-47-53(44,45)50-52(42,43)46-8-12-18(49-51(39,40)41)17(36)23(48-12)31-11-30-16-20(25)28-10-29-21(16)31;/h10-12,17-19,23,36-37H,3-9H2,1-2H3,(H,26,32)(H,27,38)(H,33,34)(H,42,43)(H,44,45)(H2,25,28,29)(H2,39,40,41);
InChi Key OPIJLICRFQMMJH-UHFFFAOYSA-N
Canonical SMILES [Li].CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)CC(=O)O)O
Isomeric SMILES [Li].CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)CC(=O)O)O
PubChem CID 16219642
Molecular Weight 853.58 (free acid basis)

Certificates

Certificate of Analysis(COA)

Enter Lot Number to search for COA:

Find and download the COA for your product by matching the lot number on the packaging.

4 results found

Lot NumberCertificate TypeDateItem
H2401159Certificate of AnalysisJul 18, 2024 M463170
H2401160Certificate of AnalysisJul 18, 2024 M463170
H2401161Certificate of AnalysisJul 18, 2024 M463170
H2401162Certificate of AnalysisJul 18, 2024 M463170

Chemical and Physical Properties

Solubility H2O: soluble 50mg/mL protein, clear, colorless;PBS (pH 7.2): 10 mg/ml

Related Documents

References

1. Palomo-Guerrero M et al..  (2019)  Sensing of nutrients by CPT1C regulates late endosome/lysosome anterograde transport and axon growth..  Elife,    [PMID:31868590]
2. R G Summers,A Ali,B Shen,W A Wessel,C R Hutchinson.  (1995-07-25)  Malonyl-coenzyme A:acyl carrier protein acyltransferase of Streptomyces glaucescens: a possible link between fatty acid and polyketide biosynthesis..  Biochemistry,  34  ((29)): (9389-9402).  [PMID:7626609]
3. Srinivas B Narayan,Richard L Boriack,Bette Messmer,Michael J Bennett.  (2005-03-02)  Establishing a reference interval for measurement of flux through the mitochondrial fatty acid oxidation pathway in cultured skin fibroblasts..  Clinical chemistry,  51  ((3)): (644-646).  [PMID:15738519]
4. Jixun Zhan.  (2009-11-12)  Biosynthesis of bacterial aromatic polyketides..  Current topics in medicinal chemistry,  ((17)): (1958-1610).  [PMID:19903160]
5. Carlos Diéguez,Gema Fruhbeck,Miguel López.  (2010-01-08)  Hypothalamic lipids and the regulation of energy homeostasis..  Obesity facts,  ((2)): (126-135).  [PMID:20054216]
6. Michael J Wolfgang,M Daniel Lane.  (2011-01-05)  Hypothalamic malonyl-CoA and CPT1c in the treatment of obesity..  The FEBS journal,  278  ((4)): (552-558).  [PMID:21199367]
7. Jian-Ping Huang,Chengli Fang,Xiaoyan Ma,Li Wang,Jing Yang,Jianying Luo,Yijun Yan,Yu Zhang,Sheng-Xiong Huang.  (2019-09-08)  Tropane alkaloids biosynthesis involves an unusual type III polyketide synthase and non-enzymatic condensation..  Nature communications,  10  ((1)): (4036-4036).  [PMID:31492848]
8. Maria Makarova,Maria Peter,Gabor Balogh,Attila Glatz,James I MacRae,Nestor Lopez Mora,Paula Booth,Eugene Makeyev,Laszlo Vigh,Snezhana Oliferenko.  (2020-01-21)  Delineating the Rules for Structural Adaptation of Membrane-Associated Proteins to Evolutionary Changes in Membrane Lipidome..  Current biology : CB,  30  ((3)): (367-380).  [PMID:31956022]
9. Kashish Singh,Benjamin Graf,Andreas Linden,Viktor Sautner,Henning Urlaub,Kai Tittmann,Holger Stark,Ashwin Chari.  (2020-03-12)  Discovery of a Regulatory Subunit of the Yeast Fatty Acid Synthase..  Cell,  180  ((6)): (1130-1143).  [PMID:32160528]
10. Prosanta K Singha,Kiira Mäklin,Taina Vihavainen,Tuomo Laitinen,Tapio J Nevalainen,Mahadeo R Patil,Arun K Tonduru,Antti Poso,Jarmo T Laitinen,Juha R Savinainen.  (2020-04-11)  Evaluation of FASN inhibitors by a versatile toolkit reveals differences in pharmacology between human and rodent FASN preparations and in antiproliferative efficacy in vitro vs. in situ in human cancer cells..  European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences,  149  (105321-105321).  [PMID:32275951]
11. Junichi Suzuki.  (2021-03-03)  Effects of hyperbaric environment on endurance and metabolism are exposure time-dependent in well-trained mice..  Physiological reports,  ((5)): (e14780-e14780).  [PMID:33650813]
12. Laiyin Nie,Tomas C Pascoa,Ashley C W Pike,Simon R Bushell,Andrew Quigley,Gian Filippo Ruda,Amy Chu,Victoria Cole,David Speedman,Tiago Moreira,Leela Shrestha,Shubhashish M M Mukhopadhyay,Nicola A Burgess-Brown,James D Love,Paul E Brennan,Elisabeth P Carpenter.  (2021-06-13)  The structural basis of fatty acid elongation by the ELOVL elongases..  Nature structural & molecular biology,  28  ((6)): (512-520).  [PMID:34117479]
13. Julia Stokes,Arielle Freed,Rebecca Bornstein,Kevin N Su,John Snell,Amanda Pan,Grace X Sun,Kyung Yeon Park,Sangwook Jung,Hailey Worstman,Brittany M Johnson,Philip G Morgan,Margaret M Sedensky,Simon C Johnson.  (2021-07-14)  Mechanisms underlying neonate-specific metabolic effects of volatile anesthetics..  eLife,  10    [PMID:34254587]
14. Gary D Lopaschuk,John R Ussher,Jagdip S Jaswal.  (2010-04-16)  Targeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite..  Pharmacological reviews,  62  ((2)): (237-264).  [PMID:20392806]
15. Anna A Dobritsa,Zhentian Lei,Shuh-Ichi Nishikawa,Ewa Urbanczyk-Wochniak,David V Huhman,Daphne Preuss,Lloyd W Sumner.  (2010-05-06)  LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis..  Plant physiology,  153  ((3)): (937-955).  [PMID:20442277]
16. Stefan Neubauer,Dinh Binh Chu,Hans Marx,Michael Sauer,Stephan Hann,Gunda Koellensperger.  (2015-07-15)  LC-MS/MS-based analysis of coenzyme A and short-chain acyl-coenzyme A thioesters..  Analytical and bioanalytical chemistry,  407  ((22)): (6681-6688).  [PMID:26168961]
17. Megan Bowers,Tong Liang,Daniel Gonzalez-Bohorquez,Sara Zocher,Baptiste N Jaeger,Werner J Kovacs,Clemens Röhrl,Kaitlyn M L Cramb,Jochen Winterer,Merit Kruse,Slavica Dimitrieva,Rupert W Overall,Thomas Wegleiter,Hossein Najmabadi,Clay F Semenkovich,Gerd Kempermann,Csaba Földy,Sebastian Jessberger.  (2020-05-11)  FASN-Dependent Lipid Metabolism Links Neurogenic Stem/Progenitor Cell Activity to Learning and Memory Deficits..  Cell stem cell,  27  ((1)): (98-109).  [PMID:32386572]

Solution Calculators