Click Here for 5% Off Your First Aladdin Purchase!

(R)-(-)-2-Amino-5-phosphonopentanoic acid - 98%, high purity , CAS No.79055-68-8

  • ≥98%
Item Number
R137370
Grouped product items
SKUSizeAvailabilityPrice Qty
R137370-1mg
1mg
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
$36.90
R137370-5mg
5mg
In stock
$78.90
R137370-10mg
10mg
In stock
$137.90
R137370-50mg
50mg
In stock
$578.90

NMDA glutamate site antagonist

Basic Description

SynonymsD-AP5|79055-68-8|5-Phosphono-D-norvaline|(R)-2-Amino-5-phosphonopentanoic acid|d-APV|D-Norvaline, 5-phosphono-|(2R)-2-amino-5-phosphonopentanoic acid|D-(-)-2-Amino-5-phosphonopentanoic Acid|D-2-Amino-5-phosphonovaleric acid|D(-)-2-Amino-5-phosphonopentano
Specifications & Purity≥98%
Biochemical and Physiological MechanismsAnticonvulsant; potent and selective N-methyl-D-aspartate (NMDA) receptor antagonist; active enantiomer of 2-amino-5-phosphonopentanoic acid.Competitive NMDA receptor glutamate site antagonist. More active form of DL-AP5.
Storage TempStore at -20°C
Shipped InIce chest + Ice pads
NoteWherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20°C. Generally, these will be useable for up to one month. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour. Need more advice on solubility, usage and handling? Please visit our frequently asked questions (FAQ) page for more details.
Product Description

D-AP5 is a selective antagonist of the NMDA receptor. D(-)-2-Amino-5-phosphonovaleric acid is described to antagonize amino acid-induced synaptic excitations, blocking L-aspartate and dorsal root-evoked spinal neuron excitation, without affecting cholinergic excitation induced by exogenous acetylcholine administration. Evoked electrical activity of neurons is suppressed by D(-)-2-Amino-5-phosphonovaleric acid antagonism of motoneuronal depolarizations at the NMDAR. The (+)-stereoisomer of D(-)-2-Amino-5-phosphonovaleric acid demonstrates considerably diminished NMDAR activity as compared to this (-)-isomer.
A selective antagonist of the NMDA receptor.

Associated Targets

CYP1A2 Tchem Cytochrome P450 1A2 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

CYP2D6 Tclin Cytochrome P450 2D6 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

CYP2C19 Tchem Cytochrome P450 2C19 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

CYP3A4 Tclin Cytochrome P450 3A4 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

CYP2C9 Tchem Cytochrome P450 2C9 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

USP1 Tchem Ubiquitin carboxyl-terminal hydrolase 1 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

CHRM1 Tclin Muscarinic acetylcholine receptor M1 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

GRIN3A Tclin Glutamate receptor ionotropic, NMDA 3A 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

GRIN1 Tclin Glutamate receptor ionotropic, NMDA 1 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

GRIN2B Tclin Glutamate receptor ionotropic, NMDA 2B 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

KDM4E Tchem Lysine-specific demethylase 4E 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

NFKB1 Tclin Nuclear factor NF-kappa-B p105 subunit 0 Activities

Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

Names and Identifiers

IUPAC Name (2R)-2-amino-5-phosphonopentanoic acid
INCHI InChI=1S/C5H12NO5P/c6-4(5(7)8)2-1-3-12(9,10)11/h4H,1-3,6H2,(H,7,8)(H2,9,10,11)/t4-/m1/s1
InChi Key VOROEQBFPPIACJ-SCSAIBSYSA-N
Canonical SMILES C(CC(C(=O)O)N)CP(=O)(O)O
Isomeric SMILES C(C[C@H](C(=O)O)N)CP(=O)(O)O
WGK Germany 3
PubChem CID 135342
Molecular Weight 197.13

Certificates

Certificate of Analysis(COA)

Enter Lot Number to search for COA:

To view the certificate results,please click on a Lot number.For Lot numbers from past orders,please use our order status section

4 results found

Lot NumberCertificate TypeDateItem
K2105807Certificate of AnalysisAug 09, 2023 R137370
K2105813Certificate of AnalysisAug 09, 2023 R137370
K2105814Certificate of AnalysisAug 09, 2023 R137370
K2105816Certificate of AnalysisAug 09, 2023 R137370

Chemical and Physical Properties

SolubilitySoluble in water (9 mg/ml), and 1 M NH4OH (50 mg/ml).
SensitivityLight sensitive

Safety and Hazards(GHS)

Pictogram(s) GHS07
Signal Warning
Hazard Statements

H315:Causes skin irritation

H319:Causes serious eye irritation

H335:May cause respiratory irritation

Precautionary Statements

P261:Avoid breathing dust/fume/gas/mist/vapors/spray.

P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do - continue rinsing.

P280:Wear protective gloves/protective clothing/eye protection/face protection.

P302+P352:IF ON SKIN: wash with plenty of water.

P321:Specific treatment (see ... on this label).

P405:Store locked up.

P501:Dispose of contents/container to ...

P264:Wash hands [and …] thoroughly after handling.

P271:Use only outdoors or in a well-ventilated area.

P304+P340:IF INHALED: Remove person to fresh air and keep comfortable for breathing.

P403+P233:Store in a well-ventilated place. Keep container tightly closed.

P362+P364:Take off contaminated clothing and wash it before reuse.

P264+P265:Wash hands [and …] thoroughly after handling. Do not touch eyes.

P337+P317:If eye irritation persists: Get medical help.

P332+P317:If skin irritation occurs: Get medical help.

P319:Get medical help if you feel unwell.

WGK Germany 3

Related Documents

References

1. Gielen M, Siegler Retchless B, Mony L, Johnson JW, Paoletti P.  (2009)  Mechanism of differential control of NMDA receptor activity by NR2 subunits..  Nature,  459  (7247): (703-7).  [PMID:19404260]
2. Jeong HJ, Vandenberg RJ, Vaughan CW.  (2010)  N-arachidonyl-glycine modulates synaptic transmission in superficial dorsal horn..  Br J Pharmacol,  161  (4): (925-35).  [PMID:20860669]
3. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR.  (2013)  Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus..  Nat Neurosci,  16  (11): (1637-43).  [PMID:24056699]
4. Hurlock EC, Bose M, Pierce G, Joho RH.  (2009)  Rescue of motor coordination by Purkinje cell-targeted restoration of Kv3.3 channels in Kcnc3-null mice requires Kcnc1..  J Neurosci,  29  (50): (15735-44).  [PMID:20016089]
5. Wulff P, Schonewille M, Renzi M, Viltono L, Sassoè-Pognetto M, Badura A, Gao Z, Hoebeek FE, van Dorp S, Wisden W et al..  (2009)  Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning..  Nat Neurosci,  12  (8): (1042-9).  [PMID:19578381]
6. Hirtz JJ, Braun N, Griesemer D, Hannes C, Janz K, Löhrke S, Müller B, Friauf E.  (2012)  Synaptic refinement of an inhibitory topographic map in the auditory brainstem requires functional Cav1.3 calcium channels..  J Neurosci,  32  (42): (14602-16).  [PMID:23077046]
7. Stegen M et al..  (2009)  Increased leak conductance in dentate gyrus granule cells of temporal lobe epilepsy patients with Ammon's horn sclerosis..  Epilepsia,  50  (4): (646-53).  [PMID:19292756]
8. Paz JT et al..  (2011)  A new mode of corticothalamic transmission revealed in the Gria4(-/-) model of absence epilepsy..  Nat Neurosci,  14  (9): (1167-73).  [PMID:21857658]
9. Dickinson BA et al..  (2009)  A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-alpha..  Mol Brain,  (18).  [PMID:19534762]
10. Copits BA et al..  (2021)  A photoswitchable GPCR-based opsin for presynaptic inhibition..  Neuron,  109  (11): (1791-1809.e11).  [PMID:33979635]
11. Kiragasi B et al..  (2017)  A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation..  Cell Rep,  19  (13): (2694-2706).  [PMID:28658618]
12. Kelamangalath L et al..  (2011)  ?-Opioid receptor inhibition of calcium oscillations in spinal cord neurons..  Mol Pharmacol,  79  (6): (1061-71).  [PMID:21422300]
13. Di Angelantonio S et al..  (2014)  A role for intracellular zinc in glioma alteration of neuronal chloride equilibrium..  Cell Death Dis,  (e1501).  [PMID:25356870]
14. Li L et al..  (2021)  a2d-1 switches the phenotype of synaptic AMPA receptors by physically disrupting heteromeric subunit assembly..  Cell Rep,  36  (3): (109396).  [PMID:34289359]
15. Ledonne A et al..  (2012)  A continuous high frequency stimulation of the subthalamic nucleus determines a suppression of excitatory synaptic transmission in nigral dopaminergic neurons recorded in vitro..  Exp Neurol,  233  (292-302).  [PMID:22056941]
16. Mutso AA et al..  (2012)  Abnormalities in hippocampal functioning with persistent pain..  J Neurosci,  32  (17): (5747-56).  [PMID:22539837]
17. Barker M et al..  (2012)  Acoustic overexposure increases the expression of VGLUT-2 mediated projections from the lateral vestibular nucleus to the dorsal cochlear nucleus..  PLoS One,  (5): (e35955).  [PMID:22570693]
18. Fan W et al..  (2010)  Activation conditions for the induction of metabotropic glutamate receptor-dependent long-term depression in hippocampal CA1 pyramidal cells..  J Neurosci,  30  (4): (1471-5).  [PMID:20107074]
19. Mangieri LR et al..  (2018)  A neural basis for antagonistic control of feeding and compulsive behaviors..  Nat Commun,  (52).  [PMID:29302029]
20. Uwechue NM et al..  (2012)  Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes..  J Physiol,  590  (Pt 10): (2317-31).  [PMID:22411007]
21. Rojas A et al..  (2013)  Activation of group I metabotropic glutamate receptors potentiates heteromeric kainate receptors..  Mol Pharmacol,  83  (106-21).  [PMID:23066089]
22. Klar R et al..  (2015)  Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus..  J Neurosci,  35  (19): (7600-15).  [PMID:25972184]
23. Tian M & Ye S.  (2016)  Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers..  Sci Rep,  (34751).  [PMID:27713495]
24. Lenz M et al..  (2021)  All-trans retinoic acid induces synaptopodin-dependent metaplasticity in mouse dentate granule cells..  Elife,  10    [PMID:34723795]
25. Potapenko ES et al..  (2012)  Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats..  Am J Physiol Regul Integr Comp Physiol,  303  (3): (R291-300).  [PMID:22696576]
26. Cathomas F et al..  (2015)  Altered emotionality and neuronal excitability in mice lacking KCTD12, an auxiliary subunit of GABAB receptors associated with mood disorders..  Transl Psychiatry,  (e510).  [PMID:25689571]
27. Wu K et al..  (2021)  Activity- and sleep-dependent regulation of tonic inhibition by Shisa7..  Cell Rep,  34  (12): (108899).  [PMID:33761345]
28. Wasling P et al..  (2012)  AMPA receptor activation causes silencing of AMPA receptor-mediated synaptic transmission in the developing hippocampus..  PLoS One,  (4): (e34474).  [PMID:22485173]
29. Auger C & Ogden D.  (2010)  AMPA receptor activation controls type I metabotropic glutamate receptor signalling via a tyrosine kinase at parallel fibre-Purkinje cell synapses..  J Physiol,  588  (Pt 16): (3063-74).  [PMID:20603338]
30. Vevea JD & Chapman ER.  (2020)  Acute disruption of the synaptic vesicle membrane protein synaptotagmin 1 using knockoff in mouse hippocampal neurons..  Elife,    [PMID:32515733]
31. Valera AM et al..  (2012)  Adaptation of granule cell to Purkinje cell synapses to high-frequency transmission..  J Neurosci,  32  (9): (3267-80).  [PMID:22378898]
32. Stegen M et al..  (2012)  Adaptive intrinsic plasticity in human dentate gyrus granule cells during temporal lobe epilepsy..  Cereb Cortex,  22  (9): (2087-101).  [PMID:22038909]
33. Ting JT et al..  (2007)  Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms..  Proc Natl Acad Sci U S A,  104  (353-8).  [PMID:17185415]
34. Faijerson J et al..  (2009)  Adult neural stem/progenitor cells reduce NMDA-induced excitotoxicity via the novel neuroprotective peptide pentinin..  J Neurochem,  109  (3): (858-66).  [PMID:19425175]
35. Gómez-Gonzalo M et al..  (2010)  An excitatory loop with astrocytes contributes to drive neurons to seizure threshold..  PLoS Biol,  (4): (e1000352).  [PMID:20405049]
36. Good CH & Lupica CR.  (2010)  Afferent-specific AMPA receptor subunit composition and regulation of synaptic plasticity in midbrain dopamine neurons by abused drugs..  J Neurosci,  30  (23): (7900-9).  [PMID:20534838]
37. Nosyreva E et al..  (2014)  Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade..  Front Mol Neurosci,  (94).  [PMID:25520615]
38. Borowska J et al..  (2011)  An intrinsic neural oscillator in the degenerating mouse retina..  J Neurosci,  31  (13): (5000-12).  [PMID:21451038]
39. McGee TP et al..  (2015)  Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function..  J Neurosci,  35  (49): (16171-9).  [PMID:26658868]
40. Bardoni R et al..  (2007)  BDNF-mediated modulation of GABA and glycine release in dorsal horn lamina II from postnatal rats..  Dev Neurobiol,  67  (7): (960-75).  [PMID:17506495]
41. Zonouzi M et al..  (2011)  Bidirectional plasticity of calcium-permeable AMPA receptors in oligodendrocyte lineage cells..  Nat Neurosci,  14  (11): (1430-8).  [PMID:21983683]
42. Mahn M et al..  (2016)  Biophysical constraints of optogenetic inhibition at presynaptic terminals..  Nat Neurosci,  19  (4): (554-6).  [PMID:26950004]
43. Vierock J et al..  (2021)  BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons..  Nat Commun,  12  (4527).  [PMID:34312384]
44. Atherton LA et al..  (2016)  Assessment of Methods for the Intracellular Blockade of GABAA Receptors..  PLoS One,  11  (8): (e0160900).  [PMID:27501143]
45. Min R & Nevian T.  (2012)  Astrocyte signaling controls spike timing-dependent depression at neocortical synapses..  Nat Neurosci,  15  (5): (746-53).  [PMID:22446881]
46. Goz RU et al..  (2020)  BRAFV600E expression in neural progenitors results in a hyperexcitable phenotype in neocortical pyramidal neurons..  J Neurophysiol,  123  (6): (2449-2464).  [PMID:32401131]
47. Wheeler DG et al..  (2012)  Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression..  Cell,  149  (5): (1112-24).  [PMID:22632974]
48. Parsons MP et al..  (2012)  ATP-sensitive potassium channels mediate the thermosensory response of orexin neurons..  J Physiol,  590  (19): (4707-15).  [PMID:22802589]
49. Younts TJ et al..  (2013)  CA1 pyramidal cell theta-burst firing triggers endocannabinoid-mediated long-term depression at both somatic and dendritic inhibitory synapses..  J Neurosci,  33  (34): (13743-57).  [PMID:23966696]
50. Davenport EC et al..  (2019)  Autism and Schizophrenia-Associated CYFIP1 Regulates the Balance of Synaptic Excitation and Inhibition..  Cell Rep,  26  (8): (2037-2051.e6).  [PMID:30784587]
51. Zhang W & Linden DJ.  (2012)  Calcium influx measured at single presynaptic boutons of cerebellar granule cell ascending axons and parallel fibers..  Cerebellum,  11  (121-31).  [PMID:20049574]
52. Park P et al..  (2016)  Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus..  J Neurosci,  36  (2): (622-31).  [PMID:26758849]
53. Percival KA et al..  (2022)  Calcium-permeable AMPA receptors on AII amacrine cells mediate sustained signaling in the On-pathway of the primate retina..  Cell Rep,  41  (2): (111484).  [PMID:36223749]
54. Georgiou AL et al..  (2010)  Changes in NMDA receptor contribution to synaptic transmission in the brain in a rat model of glaucoma..  Neurobiol Dis,  39  (3): (344-51).  [PMID:20451613]
55. Ye ZY et al..  (2012)  Casein kinase 2-mediated synaptic GluN2A up-regulation increases N-methyl-D-aspartate receptor activity and excitability of hypothalamic neurons in hypertension..  J Biol Chem,  287  (21): (17438-46).  [PMID:22474321]
56. Maroto M et al..  (2013)  Chondroitin sulfate, a major component of the perineuronal net, elicits inward currents, cell depolarization, and calcium transients by acting on AMPA and kainate receptors of hippocampal neurons..  J Neurochem,      [PMID:23350646]
57. Zhao YL et al..  (2012)  Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-D-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance..  J Biol Chem,  287  (30): (25073-85).  [PMID:22679016]
58. Kupchik YM et al..  (2014)  Cocaine dysregulates opioid gating of GABA neurotransmission in the ventral pallidum..  J Neurosci,  34  (3): (1057-66).  [PMID:24431463]
59. Dovgan AV et al..  (2010)  Decoding glutamate receptor activation by the Ca2+ sensor protein hippocalcin in rat hippocampal neurons..  Eur J Neurosci,  32  (3): (347-58).  [PMID:20704590]
60. Soh H et al..  (2018)  Deletion of KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation of excitatory transmission..  Elife,    [PMID:30382937]
61. Deisz RA et al..  (2011)  Components of neuronal chloride transport in rat and human neocortex..  J Physiol,  589  (Pt 6): (1317-47).  [PMID:21224237]
62. Soh H et al..  (2014)  Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability..  J Neurosci,  34  (15): (5311-21).  [PMID:24719109]
63. Hunker AC et al..  (2020)  Conditional Single Vector CRISPR/SaCas9 Viruses for Efficient Mutagenesis in the Adult Mouse Nervous System..  Cell Rep,  30  (12): (4303-4316.e6).  [PMID:32209486]
64. Riebe I & Hanse E.  (2012)  Development of synaptic connectivity onto interneurons in stratum radiatum in the CA1 region of the rat hippocampus..  BMC Neurosci,  13  (14).  [PMID:22276909]
65. Biane C et al..  (2021)  Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons..  Elife,  10    [PMID:34730085]
66. Ly R et al..  (2016)  Contribution of postsynaptic T-type calcium channels to parallel fibre-Purkinje cell synaptic responses..  J Physiol,  594  (4): (915-36).  [PMID:26627919]
67. Gackière F & Vinay L.  (2015)  Contribution of the potassium-chloride cotransporter KCC2 to the strength of inhibition in the neonatal rodent spinal cord in vitro..  J Neurosci,  35  (13): (5307-16).  [PMID:25834055]
68. Ho JW et al..  (2011)  Contributions of area Te2 to rat recognition memory..  Learn Mem,  18  (7): (493-501).  [PMID:21700715]
69. Barnes JL et al..  (2020)  Developmentally Transient CB1Rs on Cerebellar Afferents Suppress Afferent Input, Downstream Synaptic Excitation, and Signaling to Migrating Neurons..  J Neurosci,  40  (32): (6133-6145).  [PMID:32631938]
70. Jagannath V et al..  (2017)  Controversial Effects of D-Amino Acid Oxidase Activator (DAOA)/G72 on D-Amino Acid Oxidase (DAO) Activity in Human Neuronal, Astrocyte and Kidney Cell Lines: The N-methyl D-aspartate (NMDA) Receptor Hypofunction Point of View..  Front Mol Neurosci,  10  (342).  [PMID:29114206]
71. Suzuki K et al..  (2021)  Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action..  Cell Rep,  37  (5): (109918).  [PMID:34731624]
72. Anderson TR et al..  (2010)  Differential effects of Na+-K+ ATPase blockade on cortical layer V neurons..  J Physiol,  588  (Pt 22): (4401-14).  [PMID:20819946]
73. Husson Z et al..  (2014)  Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei..  J Neurosci,  34  (28): (9418-31).  [PMID:25009273]
74. Strandberg J & Gustafsson B.  (2011)  Critical and complex role of N-methyl-D-aspartate receptors in long-term depression at CA3-CA1 synapses in the developing hippocampus..  Neuroscience,  192  (54-66).  [PMID:21777662]
75. Hsu TT et al..  (2016)  Differential Recruitment of Dentate Gyrus Interneuron Types by Commissural Versus Perforant Pathways..  Cereb Cortex,  26  (6): (2715-27).  [PMID:26045570]
76. Augustin SM et al..  (2014)  Cyclic AMP and afferent activity govern bidirectional synaptic plasticity in striatopallidal neurons..  J Neurosci,  34  (19): (6692-9).  [PMID:24806695]
77. García-Junco-Clemente P et al..  (2010)  Cysteine string protein-alpha prevents activity-dependent degeneration in GABAergic synapses..  J Neurosci,  30  (21): (7377-91).  [PMID:20505105]
78. Wu K et al..  (2021)  Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes..  Cell Rep,  37  (6): (109960).  [PMID:34758303]
79. Marchionni I et al..  (2010)  Distinctive properties of CXC chemokine receptor 4-expressing Cajal-Retzius cells versus GABAergic interneurons of the postnatal hippocampus..  J Physiol,  588  (Pt 15): (2859-78).  [PMID:20547684]
80. Herman MA et al..  (2011)  Distribution of extracellular glutamate in the neuropil of hippocampus..  PLoS One,  (11): (e26501).  [PMID:22069455]
81. Lee JL & Hynds RE.  (2013)  Divergent cellular pathways of hippocampal memory consolidation and reconsolidation..  Hippocampus,  23  (3): (233-44).  [PMID:23197404]
82. Grau C et al..  (2014)  DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors..  Front Cell Neurosci,  (331).  [PMID:25368549]
83. Gunn BG et al..  (2013)  Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response..  J Neurosci,  33  (50): (19534-54).  [PMID:24336719]
84. Evrard A & Ropert N.  (2009)  Early development of the thalamic inhibitory feedback loop in the primary somatosensory system of the newborn mice..  J Neurosci,  29  (31): (9930-40).  [PMID:19657043]
85. Chiu CQ et al..  (2010)  Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex..  J Neurosci,  30  (21): (7236-48).  [PMID:20505090]
86. Neale SA et al..  (2014)  Effect of VGLUT inhibitors on glutamatergic synaptic transmission in the rodent hippocampus and prefrontal cortex..  Neurochem Int,  73  (159-65).  [PMID:24121008]
87. Bard L et al..  (2010)  Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins..  Proc Natl Acad Sci U S A,  107  (45): (19561-6).  [PMID:20974938]
88. Armbruster M et al..  (2020)  Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake..  Elife,    [PMID:32352378]
89. Povysheva NV & Johnson JW.  (2016)  Effects of memantine on the excitation-inhibition balance in prefrontal cortex..  Neurobiol Dis,  96  (75-83).  [PMID:27546057]
90. Bardoni R.  (2022)  Experimental Protocols and Analytical Procedures for Studying Synaptic Transmission in Rodent Spinal Cord Dorsal Horn..  Curr Protoc,  (4): (e409).  [PMID:35435326]
91. De Saint Jan D et al..  (2009)  External tufted cells drive the output of olfactory bulb glomeruli..  J Neurosci,  29  (7): (2043-52).  [PMID:19228958]
92. Abbas AK et al..  (2011)  Emetine treatment masks initial LTP without affecting long-term stability..  Brain Res,  1426  (18-29).  [PMID:22036082]
93. Hoehne A et al..  (2020)  Feed-forward recruitment of electrical synapses enhances synchronous spiking in the mouse cerebellar cortex..  Elife,    [PMID:32990593]
94. Jo YH.  (2012)  Endogenous BDNF regulates inhibitory synaptic transmission in the ventromedial nucleus of the hypothalamus..  J Neurophysiol,  107  (42-9).  [PMID:21994261]
95. Grauert A et al..  (2014)  Endogenous zinc depresses GABAergic transmission via T-type Ca(2+) channels and broadens the time window for integration of glutamatergic inputs in dentate granule cells..  J Physiol,  592  (Pt 1): (67-86).  [PMID:24081159]
96. Lazarenko RM et al..  (2018)  Fluorescent Measurement of Synaptic Activity Using FM Dyes in Dissociated Hippocampal Cultured Neurons..  Bio Protoc,  (2):   [PMID:29552593]
97. Liu GT et al..  (2022)  Endosomal phosphatidylinositol 3-phosphate controls synaptic vesicle cycling and neurotransmission..  EMBO J,  41  (9): (e109352).  [PMID:35318705]
98. Paz JT et al..  (2010)  Focal cortical infarcts alter intrinsic excitability and synaptic excitation in the reticular thalamic nucleus..  J Neurosci,  30  (15): (5465-79).  [PMID:20392967]
99. Zhang L & Alger BE.  (2010)  Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome..  J Neurosci,  30  (16): (5724-9).  [PMID:20410124]
100. Sametsky EA et al..  (2015)  Enhanced GABAA-Mediated Tonic Inhibition in Auditory Thalamus of Rats with Behavioral Evidence of Tinnitus..  J Neurosci,  35  (25): (9369-80).  [PMID:26109660]
101. Brill J & Huguenard JR.  (2010)  Enhanced infragranular and supragranular synaptic input onto layer 5 pyramidal neurons in a rat model of cortical dysplasia..  Cereb Cortex,  20  (12): (2926-38).  [PMID:20338974]
102. Ster J et al..  (2011)  Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors..  Proc Natl Acad Sci U S A,  108  (24): (9993-7).  [PMID:21628565]
103. Trigo FF et al..  (2007)  Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum..  J Neurosci,  27  (46): (12452-63).  [PMID:18003823]
104. Stepan J et al..  (2012)  Entorhinal theta-frequency input to the dentate gyrus trisynaptically evokes hippocampal CA1 LTP..  Front Neural Circuits,  (64).  [PMID:22988432]
105. Schröter M et al..  (2022)  Functional imaging of brain organoids using high-density microelectrode arrays..  MRS Bull,  47  (6): (530-544).  [PMID:36120104]
106. Case DT et al..  (2011)  Functional refinement in the projection from ventral cochlear nucleus to lateral superior olive precedes hearing onset in rat..  PLoS One,  (6): (e20756).  [PMID:21694776]
107. Doengi M et al..  (2009)  GABA uptake-dependent Ca(2+) signaling in developing olfactory bulb astrocytes..  Proc Natl Acad Sci U S A,  106  (41): (17570-5).  [PMID:19805126]
108. Fuchs C et al..  (2013)  GABA(A) receptors can initiate the formation of functional inhibitory GABAergic synapses..  Eur J Neurosci,  38  (8): (3146-58).  [PMID:23909897]
109. Zonouzi M et al..  (2015)  GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury..  Nat Neurosci,  18  (5): (674-82).  [PMID:25821912]
110. Kerstein PC et al..  (2020)  Gbx2 Identifies Two Amacrine Cell Subtypes with Distinct Molecular, Morphological, and Physiological Properties..  Cell Rep,  33  (7): (108382).  [PMID:33207201]
111. Budisantoso T et al..  (2013)  Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of Held..  J Physiol,  591  (Pt 1): (219-39).  [PMID:23070699]
112. Hablitz LM et al..  (2015)  GIRK Channels Mediate the Nonphotic Effects of Exogenous Melatonin..  J Neurosci,  35  (45): (14957-65).  [PMID:26558769]
113. Abbas AK.  (2013)  Evidence for constitutive protein synthesis in hippocampal LTP stabilization..  Neuroscience,  246  (301-11).  [PMID:23685165]
114. Cohen SM et al..  (2015)  Evolutionary and functional perspectives on signaling from neuronal surface to nucleus..  Biochem Biophys Res Commun,  460  (88-99).  [PMID:25998737]
115. Tucker K et al..  (2013)  Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel..  J Physiol,  591  (Pt 10): (2541-61).  [PMID:23478133]
116. Bardoni R et al..  (2010)  Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn..  J Physiol,  588  (Pt 5): (831-46).  [PMID:20083514]
117. Takazawa T & MacDermott AB.  (2010)  Glycinergic and GABAergic tonic inhibition fine tune inhibitory control in regionally distinct subpopulations of dorsal horn neurons..  J Physiol,  588  (Pt 14): (2571-87).  [PMID:20498232]
118. Minge D et al..  (2017)  Heparan Sulfates Support Pyramidal Cell Excitability, Synaptic Plasticity, and Context Discrimination..  Cereb Cortex,  27  (2): (903-918).  [PMID:28119345]
119. Fenselau H et al..  (2011)  Heterosynaptic long-term potentiation at GABAergic synapses of spinal lamina I neurons..  J Neurosci,  31  (48): (17383-91).  [PMID:22131400]
120. Mahn M et al..  (2018)  High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins..  Nat Commun,  (4125).  [PMID:30297821]
121. Velasco-Estevez M et al..  (2018)  Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes..  Front Aging Neurosci,  10  (332).  [PMID:30405400]
122. Murphy TR et al..  (2017)  Hippocampal and Cortical Pyramidal Neurons Swell in Parallel with Astrocytes during Acute Hypoosmolar Stress..  Front Cell Neurosci,  11  (275).  [PMID:28979186]
123. Mao R et al..  (2012)  Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex..  Cereb Cortex,  22  (3): (493-508).  [PMID:21666125]
124. Ylä-Outinen L et al..  (2010)  Human cell-based micro electrode array platform for studying neurotoxicity..  Front Neuroeng,    [PMID:20953240]
125. Gray EE et al..  (2014)  Inhibitory interactions between phosphorylation sites in the C terminus of a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunits..  J Biol Chem,  289  (21): (14600-11).  [PMID:24706758]
126. Chiu CQ & Castillo PE.  (2008)  Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus..  Neuropharmacology,  54  (68-78).  [PMID:17706254]
127. Schauer C et al..  (2015)  Hypothalamic gonadotropin-releasing hormone (GnRH) receptor neurons fire in synchrony with the female reproductive cycle..  J Neurophysiol,  114  (2): (1008-21).  [PMID:26063780]
128. Lenz M et al..  (2020)  Interleukin 10 Restores Lipopolysaccharide-Induced Alterations in Synaptic Plasticity Probed by Repetitive Magnetic Stimulation..  Front Immunol,  11  (614509).  [PMID:33391287]
129. Faria LC et al..  (2012)  Interneuronal calcium channel abnormalities in posttraumatic epileptogenic neocortex..  Neurobiol Dis,  45  (2): (821-8).  [PMID:22172650]
130. Stahlberg MA et al..  (2019)  Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics..  Neurophotonics,  (015007).  [PMID:30854405]
131. Gremel CM & Cunningham CL.  (2009)  Involvement of amygdala dopamine and nucleus accumbens NMDA receptors in ethanol-seeking behavior in mice..  Neuropsychopharmacology,  34  (6): (1443-53).  [PMID:18830237]
132. Baccini G et al..  (2012)  Impaired chemosensitivity of mouse dorsal raphe serotonergic neurons overexpressing serotonin 1A (Htr1a) receptors..  PLoS One,  (9): (e45072).  [PMID:23028768]
133. Copits BA & Swanson GT.  (2013)  Kainate receptor post-translational modifications differentially regulate association with 4.1N to control activity-dependent receptor endocytosis..  J Biol Chem,  288  (13): (8952-65).  [PMID:23400781]
134. Fekete CD et al..  (2017)  In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex..  J Comp Neurol,  525  (5): (1291-1311).  [PMID:27804142]
135. Che A et al..  (2018)  Layer I Interneurons Sharpen Sensory Maps during Neonatal Development..  Neuron,  99  (98-116.e7).  [PMID:29937280]
136. Colavita M et al..  (2016)  Layer-specific potentiation of network GABAergic inhibition in the CA1 area of the hippocampus..  Sci Rep,  (28454).  [PMID:27345695]
137. Li DP & Pan HL.  (2010)  Increased group I metabotropic glutamate receptor activity in paraventricular nucleus supports elevated sympathetic vasomotor tone in hypertension..  Am J Physiol Regul Integr Comp Physiol,  299  (2): (R552-61).  [PMID:20519363]
138. Rungta RL et al..  (2013)  Lipid Nanoparticle Delivery of siRNA to Silence Neuronal Gene Expression in the Brain..  Mol Ther Nucleic Acids,  (e136).  [PMID:24301867]
139. Robberechts Q et al..  (2010)  Long-term depression at parallel fiber to Golgi cell synapses..  J Neurophysiol,  104  (6): (3413-23).  [PMID:20861429]
140. Rousseau CV et al..  (2012)  Mixed inhibitory synaptic balance correlates with glutamatergic synaptic phenotype in cerebellar unipolar brush cells..  J Neurosci,  32  (13): (4632-44).  [PMID:22457509]
141. Taylor HBC et al..  (2021)  Long-term depression links amyloid-ß to the pathological hyperphosphorylation of tau..  Cell Rep,  36  (9): (109638).  [PMID:34469725]
142. Connelly WM & Lees G.  (2010)  Modulation and function of the autaptic connections of layer V fast spiking interneurons in the rat neocortex..  J Physiol,  588  (Pt 12): (2047-63).  [PMID:20351046]
143. Chu HY et al..  (2017)  Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons..  Neuron,  95  (6): (1306-1318.e5).  [PMID:28910619]
144. Anderson CT et al..  (2015)  Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc..  Proc Natl Acad Sci U S A,  112  (20): (E2705-14).  [PMID:25947151]
145. Chun SK & Jo YH.  (2010)  Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition..  J Neurophysiol,  104  (5): (2321-8).  [PMID:20844117]
146. Radzicki D et al..  (2017)  Loss of M1 Receptor Dependent Cholinergic Excitation Contributes to mPFC Deactivation in Neuropathic Pain..  J Neurosci,  37  (9): (2292-2304).  [PMID:28137966]
147. Kyuyoung CL & Huguenard JR.  (2014)  Modulation of short-term plasticity in the corticothalamic circuit by group III metabotropic glutamate receptors..  J Neurosci,  34  (2): (675-87).  [PMID:24403165]
148. Li J et al..  (2017)  Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development..  Neuron,  96  (4): (808-826.e8).  [PMID:29107521]
149. Sürmeli G et al..  (2015)  Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex..  Neuron,  88  (5): (1040-53).  [PMID:26606996]
150. Najac M et al..  (2011)  Monosynaptic and polysynaptic feed-forward inputs to mitral cells from olfactory sensory neurons..  J Neurosci,  31  (24): (8722-9).  [PMID:21677156]
151. Hashimotodani Y et al..  (2017)  LTP at Hilar Mossy Cell-Dentate Granule Cell Synapses Modulates Dentate Gyrus Output by Increasing Excitation/Inhibition Balance..  Neuron,  95  (4): (928-943.e3).  [PMID:28817805]
152. Henneberger C et al..  (2020)  LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia..  Neuron,  108  (5): (919-936.e11).  [PMID:32976770]
153. Masi A et al..  (2013)  MPP(+) -dependent inhibition of Ih reduces spontaneous activity and enhances EPSP summation in nigral dopamine neurons..  Br J Pharmacol,  169  (130-42).  [PMID:23323755]
154. McIver EL et al..  (2019)  Maladaptive Downregulation of Autonomous Subthalamic Nucleus Activity following the Loss of Midbrain Dopamine Neurons..  Cell Rep,  28  (4): (992-1002.e4).  [PMID:31340159]
155. Jo J et al..  (2010)  Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95..  Nat Neurosci,  13  (10): (1216-24).  [PMID:20852624]
156. Mast TG & Fadool DA.  (2012)  Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb..  PLoS One,  (2): (e31978).  [PMID:22363780]
157. Che A et al..  (2016)  Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex..  Cereb Cortex,  26  (9): (3705-18).  [PMID:26250775]
158. Ferreira SG et al..  (2009)  N-acyldopamines control striatal input terminals via novel ligand-gated cation channels..  Neuropharmacology,  56  (3): (676-83).  [PMID:19101577]
159. Dawe GB et al..  (2019)  Nanoscale Mobility of the Apo State and TARP Stoichiometry Dictate the Gating Behavior of Alternatively Spliced AMPA Receptors..  Neuron,  102  (5): (976-992.e5).  [PMID:31053408]
160. Tang AH et al..  (2011)  Nerve terminal nicotinic acetylcholine receptors initiate quantal GABA release from perisomatic interneurons by activating axonal T-type (Cav3) Ca²? channels and Ca²? release from stores..  J Neurosci,  31  (38): (13546-61).  [PMID:21940446]
161. Pregno G et al..  (2011)  Neuregulin1/ErbB4-induced migration in ST14A striatal progenitors: calcium-dependent mechanisms and modulation by NMDA receptor activation..  BMC Neurosci,  12  (103).  [PMID:21991932]
162. Kitko KE et al..  (2018)  Membrane cholesterol mediates the cellular effects of monolayer graphene substrates..  Nat Commun,  (796).  [PMID:29476054]
163. Pan Y et al..  (2021)  Neuronal activity recruits the CRTC1/CREB axis to drive transcription-dependent autophagy for maintaining late-phase LTD..  Cell Rep,  36  (3): (109398).  [PMID:34289350]
164. Pál I et al..  (2013)  Neuronal and astroglial correlates underlying spatiotemporal intrinsic optical signal in the rat hippocampal slice..  PLoS One,  (3): (e57694).  [PMID:23469218]
165. Blum R et al..  (2011)  Neuronal network formation from reprogrammed early postnatal rat cortical glial cells..  Cereb Cortex,  21  (2): (413-24).  [PMID:20562320]
166. Díaz-García CM et al..  (2017)  Neuronal Stimulation Triggers Neuronal Glycolysis and Not Lactate Uptake..  Cell Metab,  26  (2): (361-374.e4).  [PMID:28768175]
167. Wall MJ & Dale N.  (2013)  Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus..  J Physiol,  591  (Pt 16): (3853-71).  [PMID:23713028]
168. Romo-Parra H et al..  (2015)  Neurosteroids increase tonic GABAergic inhibition in the lateral section of the central amygdala in mice..  J Neurophysiol,  113  (9): (3421-31).  [PMID:25787948]
169. Cosgrove KE & Maccaferri G.  (2012)  mGlu1a-dependent recruitment of excitatory GABAergic input to neocortical Cajal-Retzius cells..  Neuropharmacology,  63  (3): (486-93).  [PMID:22579657]
170. Narboux-Nême N et al..  (2012)  Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex..  J Neurosci,  32  (18): (6183-96).  [PMID:22553025]
171. Errington AC et al..  (2011)  mGluR control of interneuron output regulates feedforward tonic GABAA inhibition in the visual thalamus..  J Neurosci,  31  (23): (8669-80).  [PMID:21653871]
172. Doengi M et al..  (2008)  New evidence for purinergic signaling in the olfactory bulb: A2A and P2Y1 receptors mediate intracellular calcium release in astrocytes..  FASEB J,  22  (7): (2368-78).  [PMID:18310463]
173. Wan Y et al..  (2020)  Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures..  Cell Rep,  33  (5): (108346).  [PMID:33147450]
174. Hartung H et al..  (2011)  Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens..  Neuropsychopharmacology,  36  (9): (1811-22).  [PMID:21508928]
175. Sieber AR et al..  (2013)  Non-Hebbian long-term potentiation of inhibitory synapses in the thalamus..  J Neurosci,  33  (40): (15675-85).  [PMID:24089475]
176. Quattrocolo G & Maccaferri G.  (2013)  Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus..  J Neurosci,  33  (13): (5486-98).  [PMID:23536064]
177. Lafourcade CA et al..  (2009)  Novel mGluR- and CB1R-independent suppression of GABA release caused by a contaminant of the group I metabotropic glutamate receptor agonist, DHPG..  PLoS One,  (7): (e6122).  [PMID:19568435]
178. Gusev AG & Uteshev VV.  (2010)  Physiological concentrations of choline activate native alpha7-containing nicotinic acetylcholine receptors in the presence of PNU-120596 [1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea]..  J Pharmacol Exp Ther,  332  (2): (588-98).  [PMID:19923442]
179. Odawara A et al..  (2016)  Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture..  Sci Rep,  (26181).  [PMID:27188845]
180. Larsen RS et al..  (2011)  NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity..  Nat Neurosci,  14  (3): (338-44).  [PMID:21297630]
181. Barker GR & Warburton EC.  (2013)  Object-in-Place Associative Recognition Memory Depends on Glutamate Receptor Neurotransmission Within Two Defined Hippocampal-Cortical Circuits: A Critical Role for AMPA and NMDA Receptors in the Hippocampus, Perirhinal, and Prefrontal Cortices..  Cereb Cortex,      [PMID:24035904]
182. Kaplan JS et al..  (2013)  Opposite actions of alcohol on tonic GABAA receptor currents mediated by nNOS and PKC activity..  Nat Neurosci,  16  (12): (1783-93).  [PMID:24162656]
183. Jurgens CW et al..  (2012)  Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus..  PLoS One,  (9): (e45717).  [PMID:23029198]
184. Balia M et al..  (2015)  Postnatal down-regulation of the GABAA receptor ?2 subunit in neocortical NG2 cells accompanies synaptic-to-extrasynaptic switch in the GABAergic transmission mode..  Cereb Cortex,  25  (4): (1114-23).  [PMID:24217990]
185. Leroy F et al..  (2015)  Potassium currents dynamically set the recruitment and firing properties of F-type motoneurons in neonatal mice..  J Neurophysiol,  114  (3): (1963-73).  [PMID:26269551]
186. Owen SF et al..  (2013)  Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons..  Nature,  500  (7463): (458-62).  [PMID:23913275]
187. Fischer T et al..  (2012)  P2Y1 receptor activation by photolysis of caged ATP enhances neuronal network activity in the developing olfactory bulb..  Purinergic Signal,  (2): (191-8).  [PMID:22187118]
188. Faria LC & Prince DA.  (2010)  Presynaptic inhibitory terminals are functionally abnormal in a rat model of posttraumatic epilepsy..  J Neurophysiol,  104  (280-90).  [PMID:20484536]
189. Kunz PA et al..  (2013)  Presynaptic NMDA receptor mechanisms for enhancing spontaneous neurotransmitter release..  J Neurosci,  33  (18): (7762-9).  [PMID:23637168]
190. Gu F et al..  (2018)  Partial TrkB receptor activation suppresses cortical epileptogenesis through actions on parvalbumin interneurons..  Neurobiol Dis,  113  (45-58).  [PMID:29408225]
191. Mouradian GC et al..  (2022)  Patch-to-Seq and Transcriptomic Analyses Yield Molecular Markers of Functionally Distinct Brainstem Serotonin Neurons..  Front Synaptic Neurosci,  14  (910820).  [PMID:35844900]
192. Levi LA et al..  (2020)  Projection-Specific Potentiation of Ventral Pallidal Glutamatergic Outputs after Abstinence from Cocaine..  J Neurosci,  40  (6): (1276-1285).  [PMID:31836662]
193. Fan KY et al..  (2012)  Proliferation of external globus pallidus-subthalamic nucleus synapses following degeneration of midbrain dopamine neurons..  J Neurosci,  32  (40): (13718-28).  [PMID:23035084]
194. Yashiro K et al..  (2010)  Properties of urethral rhabdosphincter motoneurons and their regulation by noradrenaline..  J Physiol,  588  (Pt 24): (4951-67).  [PMID:20974682]
195. Montalbano A et al..  (2015)  Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons..  PLoS One,  10  (10): (e0140369).  [PMID:26460748]
196. Avrabos C et al..  (2013)  Real-time imaging of amygdalar network dynamics in vitro reveals a neurophysiological link to behavior in a mouse model of extremes in trait anxiety..  J Neurosci,  33  (41): (16262-7).  [PMID:24107957]
197. Habbas S et al..  (2011)  Purinergic signaling in the cerebellum: Bergmann glial cells express functional ionotropic P2X7 receptors..  Glia,  59  (12): (1800-12).  [PMID:21830236]
198. Kim J & Alger BE.  (2010)  Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses..  Nat Neurosci,  13  (5): (592-600).  [PMID:20348918]
199. Kirchheim F et al..  (2013)  Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy..  Front Cell Neurosci,  (248).  [PMID:24367293]
200. Khubieh A et al..  (2016)  Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition..  Cereb Cortex,  26  (8): (3357-69).  [PMID:26209846]
201. Schätzle P et al..  (2011)  Rapid and reversible formation of spine head filopodia in response to muscarinic receptor activation in CA1 pyramidal cells..  J Physiol,  589  (Pt 17): (4353-64).  [PMID:21768266]
202. Apostolides PF & Trussell LO.  (2013)  Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse..  J Neurosci,  33  (11): (4768-81).  [PMID:23486948]
203. Fink AE & O'Dell TJ.  (2009)  Short trains of theta frequency stimulation enhance CA1 pyramidal neuron excitability in the absence of synaptic potentiation..  J Neurosci,  29  (36): (11203-14).  [PMID:19741127]
204. Dorgans K et al..  (2019)  Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing..  Elife,    [PMID:31081751]
205. Ahmed T et al..  (2015)  Rescue of impaired late-phase long-term depression in a tau transgenic mouse model..  Neurobiol Aging,  36  (2): (730-9).  [PMID:25443285]
206. Andrade AL & Rossi DJ.  (2010)  Simulated ischaemia induces Ca2+-independent glutamatergic vesicle release through actin filament depolymerization in area CA1 of the hippocampus..  J Physiol,  588  (Pt 9): (1499-514).  [PMID:20211977]
207. Hong S et al..  (2012)  Single neuron firing properties impact correlation-based population coding..  J Neurosci,  32  (4): (1413-28).  [PMID:22279226]
208. Brill J & Huguenard JR.  (2009)  Robust short-latency perisomatic inhibition onto neocortical pyramidal cells detected by laser-scanning photostimulation..  J Neurosci,  29  (23): (7413-23).  [PMID:19515909]
209. Christian CA & Huguenard JR.  (2013)  Sniffer patch laser uncaging response (SPLURgE): an assay of regional differences in allosteric receptor modulation and neurotransmitter clearance..  J Neurophysiol,  110  (7): (1722-31).  [PMID:23843428]
210. Halff EF et al..  (2019)  SNX27-Mediated Recycling of Neuroligin-2 Regulates Inhibitory Signaling..  Cell Rep,  29  (9): (2599-2607.e6).  [PMID:31775031]
211. Niehaus JK et al..  (2021)  Spinal macrophages resolve nociceptive hypersensitivity after peripheral injury..  Neuron,  109  (8): (1274-1282.e6).  [PMID:33667343]
212. Kuo SP & Trussell LO.  (2011)  Spontaneous spiking and synaptic depression underlie noradrenergic control of feed-forward inhibition..  Neuron,  71  (2): (306-18).  [PMID:21791289]
213. Kleidonas D & Vlachos A.  (2021)  Scavenging Tumor Necrosis Factor a Does Not Affect Inhibition of Dentate Granule Cells Following In Vitro Entorhinal Cortex Lesion..  Cells,  10  (11):   [PMID:34831454]
214. Jackson AC & Nicoll RA.  (2011)  Stargazin (TARP gamma-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells..  J Neurosci,  31  (11): (3939-52).  [PMID:21411637]
215. Prakash M et al..  (2022)  Selective control of synaptically-connected circuit elements by all-optical synapses..  Commun Biol,  (33).  [PMID:35017641]
216. Atherton JF et al..  (2010)  Selective participation of somatodendritic HCN channels in inhibitory but not excitatory synaptic integration in neurons of the subthalamic nucleus..  J Neurosci,  30  (47): (16025-40).  [PMID:21106841]
217. Parri HR et al..  (2010)  Sensory and cortical activation of distinct glial cell subtypes in the somatosensory thalamus of young rats..  Eur J Neurosci,  32  (29-40).  [PMID:20608967]
218. Bock R et al..  (2013)  Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use..  Nat Neurosci,  16  (5): (632-8).  [PMID:23542690]
219. Brill J & Huguenard JR.  (2008)  Sequential changes in AMPA receptor targeting in the developing neocortical excitatory circuit..  J Neurosci,  28  (51): (13918-28).  [PMID:19091980]
220. Jeong HJ et al..  (2013)  Serotonergic modulation of neuronal activity in rat midbrain periaqueductal gray..  J Neurophysiol,  109  (11): (2712-9).  [PMID:23515792]
221. Threlfell S et al..  (2012)  Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons..  Neuron,  75  (58-64).  [PMID:22794260]
222. Platt NJ et al..  (2012)  Striatal dopamine transmission is subtly modified in human A53Ta-synuclein overexpressing mice..  PLoS One,  (5): (e36397).  [PMID:22570709]
223. Zhang J et al..  (2021)  Severe deficiency of the voltage-gated sodium channel NaV1.2 elevates neuronal excitability in adult mice..  Cell Rep,  36  (5): (109495).  [PMID:34348148]
224. Threlfell S et al..  (2010)  Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum..  J Neurosci,  30  (9): (3398-408).  [PMID:20203199]
225. Zhang JB et al..  (2018)  Structural Basis of the Proton Sensitivity of Human GluN1-GluN2A NMDA Receptors..  Cell Rep,  25  (13): (3582-3590.e4).  [PMID:30590034]
226. Elegheert J et al..  (2017)  Structural Mechanism for Modulation of Synaptic Neuroligin-Neurexin Signaling by MDGA Proteins..  Neuron,  95  (4): (896-913.e10).  [PMID:28817804]
227. Mauger O et al..  (2016)  Targeted Intron Retention and Excision for Rapid Gene Regulation in Response to Neuronal Activity..  Neuron,  92  (6): (1266-1278).  [PMID:28009274]
228. Gielen M et al..  (2008)  Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition..  Neuron,  57  (80-93).  [PMID:18184566]
229. Apostolides PF & Trussell LO.  (2014)  Superficial stellate cells of the dorsal cochlear nucleus..  Front Neural Circuits,  (63).  [PMID:24959121]
230. Hablitz LM et al..  (2014)  Suprachiasmatic nucleus function and circadian entrainment are modulated by G\xa0protein-coupled inwardly rectifying (GIRK) channels..  J Physiol,  592  (Pt 22): (5079-92).  [PMID:25217379]
231. Kuijlaars J et al..  (2016)  Sustained synchronized neuronal network activity in a human astrocyte co-culture system..  Sci Rep,  (36529).  [PMID:27819315]
232. Pousinha PA et al..  (2019)  The Amyloid Precursor Protein C-Terminal Domain Alters CA1 Neuron Firing, Modifying Hippocampus Oscillations and Impairing Spatial Memory Encoding..  Cell Rep,  29  (2): (317-331.e5).  [PMID:31597094]
233. Perugini A et al..  (2012)  Synaptic plasticity from amygdala to perirhinal cortex: a possible mechanism for emotional enhancement of visual recognition memory?.  Eur J Neurosci,  36  (4): (2421-7).  [PMID:22616722]
234. Renden R & von Gersdorff H.  (2007)  Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation..  J Neurophysiol,  98  (6): (3349-59).  [PMID:17942618]
235. McInnes J et al..  (2018)  Synaptogyrin-3 Mediates Presynaptic Dysfunction Induced by Tau..  Neuron,  97  (4): (823-835.e8).  [PMID:29398363]
236. Kaeser-Woo YJ et al..  (2013)  Synaptotagmin-12 phosphorylation by cAMP-dependent protein kinase is essential for hippocampal mossy fiber LTP..  J Neurosci,  33  (23): (9769-80).  [PMID:23739973]
237. Marchionni I et al..  (2012)  The chemokine CXCL12 and the HIV-1 envelope protein gp120 regulate spontaneous activity of Cajal-Retzius cells in opposite directions..  J Physiol,  590  (13): (3185-202).  [PMID:22473778]
238. Díaz-García CM et al..  (2021)  The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle..  Elife,  10    [PMID:33555254]
239. Kalappa BI & Uteshev VV.  (2013)  The dual effect of PNU-120596 on a7 nicotinic acetylcholine receptor channels..  Eur J Pharmacol,  718  (1-3): (226-34).  [PMID:24036349]
240. Cajigas I et al..  (2018)  The Evf2 Ultraconserved Enhancer lncRNA Functionally and Spatially Organizes Megabase Distant Genes in the Developing Forebrain..  Mol Cell,  71  (6): (956-972.e9).  [PMID:30146317]
241. Odawara A et al..  (2018)  Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cell-derived cortical neuronal networks using an MEA system..  Sci Rep,  (10416).  [PMID:29991696]
242. Bertollini C et al..  (2012)  Transient increase in neuronal chloride concentration by neuroactive aminoacids released from glioma cells..  Front Mol Neurosci,  (100).  [PMID:23189038]
243. Kasanetz F et al..  (2010)  Transition to addiction is associated with a persistent impairment in synaptic plasticity..  Science,  328  (5986): (1709-12).  [PMID:20576893]
244. Fossati M et al..  (2019)  Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons..  Neuron,  104  (6): (1081-1094.e7).  [PMID:31704028]
245. Meyer DJ et al..  (2022)  The Na+/K+ pump dominates control of glycolysis in hippocampal dentate granule cells..  Elife,  11    [PMID:36222651]
246. Lee EJ et al..  (2015)  Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation..  Nat Commun,  (7168).  [PMID:25981743]
247. Sanders SS et al..  (2020)  The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment..  Elife,    [PMID:33185190]
248. Rojas A et al..  (2014)  The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus..  Neurobiol Dis,  70  (74-89).  [PMID:24952362]
249. Temkin P et al..  (2017)  The Retromer Supports AMPA Receptor Trafficking During LTP..  Neuron,  94  (74-82.e5).  [PMID:28384478]
250. Ly R et al..  (2013)  T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning..  Proc Natl Acad Sci U S A,  110  (50): (20302-7).  [PMID:24277825]
251. Garden DL et al..  (2008)  Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields..  Neuron,  60  (5): (875-89).  [PMID:19081381]
252. Murphy-Baum BL & Taylor WR.  (2015)  The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina..  J Neurosci,  35  (39): (13336-50).  [PMID:26424882]
253. Valbuena S et al..  (2019)  Unbalanced dendritic inhibition of CA1 neurons drives spatial-memory deficits in the Ts2Cje Down syndrome model..  Nat Commun,  10  (4991).  [PMID:31676751]
254. Young CC et al..  (2009)  Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy..  J Physiol,  587  (Pt 17): (4213-33).  [PMID:19564397]
255. Brady JD et al..  (2010)  Vesicular GABA release delays the onset of the Purkinje cell terminal depolarization without affecting tissue swelling in cerebellar slices during simulated ischemia..  Neuroscience,  168  (108-17).  [PMID:20226232]

Solution Calculators