SR-95531 - 98% (HPLC), high purity , CAS No.104104-50-9

  • ≥98%(HPLC)
Item Number
S165603
Grouped product items
SKUSizeAvailabilityPrice Qty
S165603-5mg
5mg
In stock
$58.90
S165603-10mg
10mg
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$88.90
S165603-50mg
50mg
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
$325.90
S165603-100mg
100mg
In stock
$583.90
S165603-250mg
250mg
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
$1,314.90

GABA A antagonist

Basic Description

Synonyms4-16-00-00232 (Beilstein Handbook Reference) | SR 95531 HYDROBROMIDE | C15H17N3O3.HBr | J-001107 | AKOS024456498 | 6-Amino-5-methyl-3-(4-methoxyphenyl)-1-pyridaziniumbutyric acid Br | BS43265 | 6-Imino-3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid mon
Specifications & Purity≥98%(HPLC)
Biochemical and Physiological MechanismsSR-95531 is a specific GABAA receptor antagonist that does not affect GABA-transaminase or glutamate-decarboxylase activities.
Storage TempStore at -20°C
Shipped InIce chest + Ice pads
NoteWherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20°C. Generally, these will be useable for up to one month. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour. Need more advice on solubility, usage and handling? Please visit our frequently asked questions (FAQ) page for more details.

Names and Identifiers

IUPAC Name 4-[6-imino-3-(4-methoxyphenyl)pyridazin-1-yl]butanoic acid;hydrobromide
INCHI InChI=1S/C15H17N3O3.BrH/c1-21-12-6-4-11(5-7-12)13-8-9-14(16)18(17-13)10-2-3-15(19)20;/h4-9,16H,2-3,10H2,1H3,(H,19,20);1H
InChi Key GFZHNFOGCMEYTA-UHFFFAOYSA-N
Canonical SMILES COC1=CC=C(C=C1)C2=NN(C(=N)C=C2)CCCC(=O)O.Br
Isomeric SMILES COC1=CC=C(C=C1)C2=NN(C(=N)C=C2)CCCC(=O)O.Br
WGK Germany 3
PubChem CID 107895
Molecular Weight 368.23

Certificates

Certificate of Analysis(COA)

Enter Lot Number to search for COA:

Find and download the COA for your product by matching the lot number on the packaging.

5 results found

Lot NumberCertificate TypeDateItem
J2119615Certificate of AnalysisAug 09, 2024 S165603
J2119644Certificate of AnalysisAug 09, 2024 S165603
J2119648Certificate of AnalysisAug 09, 2024 S165603
J2119664Certificate of AnalysisAug 09, 2024 S165603
J2120055Certificate of AnalysisAug 09, 2024 S165603

Safety and Hazards(GHS)

WGK Germany 3

Related Documents

References

1. Kim YS, Kang E, Makino Y, Park S, Shin JH, Song H, Launay P, Linden DJ.  (2013)  Characterizing the conductance underlying depolarization-induced slow current in cerebellar Purkinje cells..  J Neurophysiol,  109  (4): (1174-81).  [PMID:23197456] [10.1021/op500134e]
2. Wulff P, Schonewille M, Renzi M, Viltono L, Sassoè-Pognetto M, Badura A, Gao Z, Hoebeek FE, van Dorp S, Wisden W et al..  (2009)  Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning..  Nat Neurosci,  12  (8): (1042-9).  [PMID:19578381] [10.1021/op500134e]
3. Mangieri LR et al..  (2018)  A neural basis for antagonistic control of feeding and compulsive behaviors..  Nat Commun,  (52).  [PMID:29302029]
4. Kim CS & Johnston D.  (2015)  A1 adenosine receptor-mediated GIRK channels contribute to the resting conductance of CA1 neurons in the dorsal hippocampus..  J Neurophysiol,  113  (7): (2511-23).  [PMID:25652929]
5. Errington AC et al..  (2011)  Aberrant GABA(A) receptor-mediated inhibition in cortico-thalamic networks of succinic semialdehyde dehydrogenase deficient mice..  PLoS One,  (4): (e19021).  [PMID:21526163]
6. Hedrick T & Waters J.  (2015)  Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors..  J Neurophysiol,  113  (7): (2195-209).  [PMID:25589590]
7. Wu PY et al..  (2013)  Acid-sensing ion channel-1a is not required for normal hippocampal LTP and spatial memory..  J Neurosci,  33  (5): (1828-32).  [PMID:23365222]
8. Kalappa BI et al..  (2010)  Activation of functional a7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596..  PLoS One,  (11): (e13964).  [PMID:21103043]
9. Riva M et al..  (2019)  Activity-dependent death of transient Cajal-Retzius neurons is required for functional cortical wiring..  Elife,    [PMID:31891351]
10. Brown JT & Randall AD.  (2009)  Activity-dependent depression of the spike after-depolarization generates long-lasting intrinsic plasticity in hippocampal CA3 pyramidal neurons..  J Physiol,  587  (Pt 6): (1265-81).  [PMID:19171653]
11. Favuzzi E et al..  (2017)  Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican..  Neuron,  95  (3): (639-655.e10).  [PMID:28712654]
12. Tovar KR & Westbrook GL.  (2012)  Amino-terminal ligands prolong NMDA Receptor-mediated EPSCs..  J Neurosci,  32  (23): (8065-73).  [PMID:22674281]
13. Auger C & Ogden D.  (2010)  AMPA receptor activation controls type I metabotropic glutamate receptor signalling via a tyrosine kinase at parallel fibre-Purkinje cell synapses..  J Physiol,  588  (Pt 16): (3063-74).  [PMID:20603338]
14. Zbarska S & Bracha V.  (2012)  Assessing the role of inferior olivary sensory signaling in the expression of conditioned eyeblinks using a combined glutamate/GABAA receptor antagonist protocol..  J Neurophysiol,  107  (273-82).  [PMID:21975449]
15. Tagoe T et al..  (2014)  Auditory nerve perinodal dysmyelination in noise-induced hearing loss..  J Neurosci,  34  (7): (2684-8).  [PMID:24523557]
16. Bender KJ & Trussell LO.  (2009)  Axon initial segment Ca2+ channels influence action potential generation and timing..  Neuron,  61  (2): (259-71).  [PMID:19186168]
17. Li WC et al..  (2014)  Behavioral observation of Xenopus tadpole swimming for neuroscience labs..  J Undergrad Neurosci Educ,  12  (2): (A107-13).  [PMID:24693257]
18. Zonouzi M et al..  (2011)  Bidirectional plasticity of calcium-permeable AMPA receptors in oligodendrocyte lineage cells..  Nat Neurosci,  14  (11): (1430-8).  [PMID:21983683]
19. Su LD & Shen Y.  (2009)  Blockade of glutamate transporters facilitates cerebellar synaptic long-term depression..  Neuroreport,  20  (5): (502-7).  [PMID:19289926]
20. Parker KL et al..  (2009)  Blocking GABAA neurotransmission in the interposed nuclei: effects on conditioned and unconditioned eyeblinks..  Brain Res,  1292  (25-37).  [PMID:19635470]
21. Goz RU et al..  (2020)  BRAFV600E expression in neural progenitors results in a hyperexcitable phenotype in neocortical pyramidal neurons..  J Neurophysiol,  123  (6): (2449-2464).  [PMID:32401131]
22. Zhang W & Linden DJ.  (2012)  Calcium influx measured at single presynaptic boutons of cerebellar granule cell ascending axons and parallel fibers..  Cerebellum,  11  (121-31).  [PMID:20049574]
23. Hirtz JJ et al..  (2011)  Cav1.3 calcium channels are required for normal development of the auditory brainstem..  J Neurosci,  31  (22): (8280-94).  [PMID:21632949]
24. Turecek J & Regehr WG.  (2020)  Cerebellar and vestibular nuclear synapses in the inferior olive have distinct release kinetics and neurotransmitters..  Elife,    [PMID:33259288]
25. Rudolph S et al..  (2020)  Cerebellum-Specific Deletion of the GABAA Receptor d Subunit Leads to Sex-Specific Disruption of Behavior..  Cell Rep,  33  (5): (108338).  [PMID:33147470]
26. Mitchell VA et al..  (2011)  Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray..  Neuropsychopharmacology,  36  (9): (1801-10).  [PMID:21525858]
27. Saiepour MH et al..  (2014)  Competition and Homeostasis of Excitatory and Inhibitory Connectivity in the Adult Mouse Visual Cortex..  Cereb Cortex,      [PMID:25316336]
28. Dovgan AV et al..  (2010)  Decoding glutamate receptor activation by the Ca2+ sensor protein hippocalcin in rat hippocampal neurons..  Eur J Neurosci,  32  (3): (347-58).  [PMID:20704590]
29. Hoshiko M et al..  (2012)  Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex..  J Neurosci,  32  (43): (15106-11).  [PMID:23100431]
30. Tyan L et al..  (2014)  Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry..  J Neurosci,  34  (13): (4534-47).  [PMID:24671999]
31. Shin JH et al..  (2009)  Depolarization-induced slow current in cerebellar Purkinje cells does not require metabotropic glutamate receptor 1..  Neuroscience,  162  (3): (688-93).  [PMID:19409231]
32. Biane C et al..  (2021)  Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons..  Elife,  10    [PMID:34730085]
33. Pizzarelli R & Cherubini E.  (2013)  Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice: an animal model of Autism..  Front Cell Neurosci,  (85).  [PMID:23761734]
34. Barnes JL et al..  (2020)  Developmentally Transient CB1Rs on Cerebellar Afferents Suppress Afferent Input, Downstream Synaptic Excitation, and Signaling to Migrating Neurons..  J Neurosci,  40  (32): (6133-6145).  [PMID:32631938]
35. Lin EC et al..  (2017)  Differential Contribution of Ca(2+)-Dependent Mechanisms to Hyperexcitability in Layer V Neurons of the Medial Entorhinal Cortex..  Front Cell Neurosci,  11  (182).  [PMID:28713246]
36. Husson Z et al..  (2014)  Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei..  J Neurosci,  34  (28): (9418-31).  [PMID:25009273]
37. Zarhin D et al..  (2022)  Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models..  Cell Rep,  38  (3): (110268).  [PMID:35045289]
38. Maher BJ & LoTurco JJ.  (2012)  Disrupted-in-schizophrenia (DISC1) functions presynaptically at glutamatergic synapses..  PLoS One,  (3): (e34053).  [PMID:22479520]
39. Han EB & Heinemann SF.  (2013)  Distal dendritic inputs control neuronal activity by heterosynaptic potentiation of proximal inputs..  J Neurosci,  33  (4): (1314-25).  [PMID:23345207]
40. Zhao Y et al..  (2009)  Distinct functional and anatomical architecture of the endocannabinoid system in the auditory brainstem..  J Neurophysiol,  101  (5): (2434-46).  [PMID:19279154]
41. Borisovska M et al..  (2013)  Distinct modes of dopamine and GABA release in a dual transmitter neuron..  J Neurosci,  33  (5): (1790-6).  [PMID:23365218]
42. Marchionni I et al..  (2010)  Distinctive properties of CXC chemokine receptor 4-expressing Cajal-Retzius cells versus GABAergic interneurons of the postnatal hippocampus..  J Physiol,  588  (Pt 15): (2859-78).  [PMID:20547684]
43. Kim YS et al..  (2009)  Dopamine signaling is required for depolarization-induced slow current in cerebellar Purkinje cells..  J Neurosci,  29  (26): (8530-8).  [PMID:19571144]
44. Irie T & Trussell LO.  (2017)  Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing..  Neuron,  96  (4): (856-870.e4).  [PMID:29144974]
45. Russo G et al..  (2013)  Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons..  Front Cell Neurosci,  (209).  [PMID:24294191]
46. Chen CR et al..  (2021)  Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice..  Elife,  10    [PMID:34787078]
47. Evrard A & Ropert N.  (2009)  Early development of the thalamic inhibitory feedback loop in the primary somatosensory system of the newborn mice..  J Neurosci,  29  (31): (9930-40).  [PMID:19657043]
48. Povysheva NV & Johnson JW.  (2016)  Effects of memantine on the excitation-inhibition balance in prefrontal cortex..  Neurobiol Dis,  96  (75-83).  [PMID:27546057]
49. Sametsky EA et al..  (2015)  Enhanced GABAA-Mediated Tonic Inhibition in Auditory Thalamus of Rats with Behavioral Evidence of Tinnitus..  J Neurosci,  35  (25): (9369-80).  [PMID:26109660]
50. Trigo FF et al..  (2007)  Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum..  J Neurosci,  27  (46): (12452-63).  [PMID:18003823]
51. Han KS et al..  (2018)  Ephaptic Coupling Promotes Synchronous Firing of Cerebellar Purkinje Cells..  Neuron,  100  (3): (564-578.e3).  [PMID:30293822]
52. Su LD et al..  (2010)  Ethanol acutely modulates mGluR1-dependent long-term depression in cerebellum..  Alcohol Clin Exp Res,  34  (7): (1140-5).  [PMID:20477778]
53. De Saint Jan D et al..  (2009)  External tufted cells drive the output of olfactory bulb glomeruli..  J Neurosci,  29  (7): (2043-52).  [PMID:19228958]
54. Hoehne A et al..  (2020)  Feed-forward recruitment of electrical synapses enhances synchronous spiking in the mouse cerebellar cortex..  Elife,    [PMID:32990593]
55. Roberts MT et al..  (2008)  Fidelity of complex spike-mediated synaptic transmission between inhibitory interneurons..  J Neurosci,  28  (38): (9440-50).  [PMID:18799676]
56. Mingote S et al..  (2015)  Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions..  J Neurosci,  35  (49): (16259-71).  [PMID:26658874]
57. Chowdhury S et al..  (2019)  GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice..  Elife,    [PMID:31159923]
58. Heubl M et al..  (2017)  GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl--sensitive WNK1 kinase..  Nat Commun,  (1776).  [PMID:29176664]
59. Corns LF et al..  (2013)  GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord..  Neurosci Lett,  553  (57-62).  [PMID:23872091]
60. Tucker K et al..  (2013)  Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel..  J Physiol,  591  (Pt 10): (2541-61).  [PMID:23478133]
61. Adrover MF et al..  (2014)  Glutamate and dopamine transmission from midbrain dopamine neurons share similar release properties but are differentially affected by cocaine..  J Neurosci,  34  (9): (3183-92).  [PMID:24573277]
62. Anstötz M et al..  (2022)  Glutamate released by Cajal-Retzius cells impacts specific hippocampal circuits and behaviors..  Cell Rep,  39  (7): (110822).  [PMID:35584670]
63. Morais TP et al..  (2017)  Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes..  Front Mol Neurosci,  10  (444).  [PMID:29386993]
64. Takazawa T & MacDermott AB.  (2010)  Glycinergic and GABAergic tonic inhibition fine tune inhibitory control in regionally distinct subpopulations of dorsal horn neurons..  J Physiol,  588  (Pt 14): (2571-87).  [PMID:20498232]
65. Kuo SP et al..  (2009)  Heterogeneous kinetics and pharmacology of synaptic inhibition in the chick auditory brainstem..  J Neurosci,  29  (30): (9625-34).  [PMID:19641125]
66. Félix-Oliveira A et al..  (2014)  Homeostatic plasticity induced by brief activity deprivation enhances long-term potentiation in the mature rat hippocampus..  J Neurophysiol,  112  (11): (3012-22).  [PMID:25210161]
67. de San Martin JZ et al..  (2015)  Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity..  J Gen Physiol,  146  (6): (477-93).  [PMID:26621773]
68. Baccini G et al..  (2012)  Impaired chemosensitivity of mouse dorsal raphe serotonergic neurons overexpressing serotonin 1A (Htr1a) receptors..  PLoS One,  (9): (e45072).  [PMID:23028768]
69. Brager DH et al..  (2012)  Impaired dendritic expression and plasticity of h-channels in the fmr1(-/y) mouse model of fragile X syndrome..  Cell Rep,  (3): (225-33).  [PMID:22662315]
70. Griguoli M et al..  (2013)  In hippocampal oriens interneurons anti-Hebbian long-term potentiation requires cholinergic signaling via a7 nicotinic acetylcholine receptors..  J Neurosci,  33  (3): (1044-9).  [PMID:23325242]
71. Ortolani D et al..  (2018)  In vivo Optogenetic Approach to Study Neuron-Oligodendroglia Interactions in Mouse Pups..  Front Cell Neurosci,  12  (477).  [PMID:30574070]
72. Fekete CD et al..  (2017)  In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex..  J Comp Neurol,  525  (5): (1291-1311).  [PMID:27804142]
73. Chen TJ et al..  (2018)  In\xa0Vivo Regulation of Oligodendrocyte Precursor Cell Proliferation and Differentiation by the AMPA-Receptor Subunit GluA2..  Cell Rep,  25  (4): (852-861.e7).  [PMID:30355492]
74. Kawahara H et al..  (2011)  Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel-mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey..  Br J Pharmacol,  163  (6): (1214-22).  [PMID:21175570]
75. Jin Z et al..  (2011)  Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current..  PLoS One,  (e16188).  [PMID:21264261]
76. Hamlet WR et al..  (2014)  Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis..  Front Neural Circuits,  (51).  [PMID:24904297]
77. Dougherty KA et al..  (2012)  Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus..  J Physiol,  590  (22): (5707-22).  [PMID:22988138]
78. Stahlberg MA et al..  (2019)  Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics..  Neurophotonics,  (015007).  [PMID:30854405]
79. Zurita H et al..  (2018)  Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons..  Front Cell Neurosci,  12  (53).  [PMID:29559891]
80. Che A et al..  (2018)  Layer I Interneurons Sharpen Sensory Maps during Neonatal Development..  Neuron,  99  (98-116.e7).  [PMID:29937280]
81. Shi HY et al..  (2020)  Lesion of intergeniculate leaflet GABAergic neurons attenuates sleep in mice exposed to light..  Sleep,  43  (2):   [PMID:31552427]
82. Robberechts Q et al..  (2010)  Long-term depression at parallel fiber to Golgi cell synapses..  J Neurophysiol,  104  (6): (3413-23).  [PMID:20861429]
83. Asgarihafshejani A et al..  (2022)  Long-term potentiation at pyramidal cell to somatostatin interneuron synapses controls hippocampal network plasticity and memory..  iScience,  25  (5): (104259).  [PMID:35521524]
84. Khan MM & Regehr WG.  (2020)  Loss of Doc2b does not influence transmission at Purkinje cell to deep nuclei synapses under physiological conditions..  Elife,    [PMID:32347796]
85. Chu HY et al..  (2017)  Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons..  Neuron,  95  (6): (1306-1318.e5).  [PMID:28910619]
86. Borisovska M et al..  (2011)  Loss of olfactory cell adhesion molecule reduces the synchrony of mitral cell activity in olfactory glomeruli..  J Physiol,  589  (Pt 8): (1927-41).  [PMID:21486802]
87. McIver EL et al..  (2019)  Maladaptive Downregulation of Autonomous Subthalamic Nucleus Activity following the Loss of Midbrain Dopamine Neurons..  Cell Rep,  28  (4): (992-1002.e4).  [PMID:31340159]
88. Zhao Y et al..  (2011)  Mechanisms underlying input-specific expression of endocannabinoid-mediated synaptic plasticity in the dorsal cochlear nucleus..  Hear Res,  279  (1-2): (67-73).  [PMID:21426926]
89. Cosgrove KE & Maccaferri G.  (2012)  mGlu1a-dependent recruitment of excitatory GABAergic input to neocortical Cajal-Retzius cells..  Neuropharmacology,  63  (3): (486-93).  [PMID:22579657]
90. Styr B et al..  (2019)  Mitochondrial Regulation of the Hippocampal Firing Rate Set Point and Seizure Susceptibility..  Neuron,  102  (5): (1009-1024.e8).  [PMID:31047779]
91. Rousseau CV et al..  (2012)  Mixed inhibitory synaptic balance correlates with glutamatergic synaptic phenotype in cerebellar unipolar brush cells..  J Neurosci,  32  (13): (4632-44).  [PMID:22457509]
92. Anderson CT et al..  (2015)  Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc..  Proc Natl Acad Sci U S A,  112  (20): (E2705-14).  [PMID:25947151]
93. Roberts MT & Trussell LO.  (2010)  Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus..  J Neurophysiol,  104  (5): (2462-73).  [PMID:20719922]
94. Najac M et al..  (2011)  Monosynaptic and polysynaptic feed-forward inputs to mitral cells from olfactory sensory neurons..  J Neurosci,  31  (24): (8722-9).  [PMID:21677156]
95. Masi A et al..  (2013)  MPP(+) -dependent inhibition of Ih reduces spontaneous activity and enhances EPSP summation in nigral dopamine neurons..  Br J Pharmacol,  169  (130-42).  [PMID:23323755]
96. Shin JH et al..  (2015)  Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens..  Proc Natl Acad Sci U S A,  112  (26): (8124-9).  [PMID:26080439]
97. Che A et al..  (2016)  Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex..  Cereb Cortex,  26  (9): (3705-18).  [PMID:26250775]
98. Du H et al..  (2013)  Neuregulin-1 impairs the long-term depression of hippocampal inhibitory synapses by facilitating the degradation of endocannabinoid 2-AG..  J Neurosci,  33  (38): (15022-31).  [PMID:24048832]
99. Zhang W & Linden DJ.  (2009)  Neuromodulation at single presynaptic boutons of cerebellar parallel fibers is determined by bouton size and basal action potential-evoked Ca transient amplitude..  J Neurosci,  29  (49): (15586-94).  [PMID:20007482]
100. Tsai MC et al..  (2012)  Neuronal glutamate transporters regulate glial excitatory transmission..  J Neurosci,  32  (5): (1528-35).  [PMID:22302796]
101. Turecek J & Regehr WG.  (2019)  Neuronal Regulation of Fast Synaptotagmin Isoforms Controls the Relative Contributions of Synchronous and Asynchronous Release..  Neuron,  101  (5): (938-949.e4).  [PMID:30733150]
102. Lin YS et al..  (2016)  Neuronal Splicing Regulator RBFOX3 (NeuN) Regulates Adult Hippocampal Neurogenesis and Synaptogenesis..  PLoS One,  11  (10): (e0164164).  [PMID:27701470]
103. Romo-Parra H et al..  (2015)  Neurosteroids increase tonic GABAergic inhibition in the lateral section of the central amygdala in mice..  J Neurophysiol,  113  (9): (3421-31).  [PMID:25787948]
104. Kortleven C et al..  (2012)  Neurotensin inhibits glutamate-mediated synaptic inputs onto ventral tegmental area dopamine neurons through the release of the endocannabinoid 2-AG..  Neuropharmacology,  63  (6): (983-91).  [PMID:22884466]
105. Narboux-Nême N et al..  (2012)  Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex..  J Neurosci,  32  (18): (6183-96).  [PMID:22553025]
106. Quattrocolo G & Maccaferri G.  (2013)  Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus..  J Neurosci,  33  (13): (5486-98).  [PMID:23536064]
107. Rakotomamonjy J et al..  (2011)  Novel protective effect of mifepristone on detrimental GABAA receptor activity to immature Purkinje neurons..  FASEB J,  25  (11): (3999-4010).  [PMID:21795502]
108. Kaplan JS et al..  (2013)  Opposite actions of alcohol on tonic GABAA receptor currents mediated by nNOS and PKC activity..  Nat Neurosci,  16  (12): (1783-93).  [PMID:24162656]
109. Fischer T et al..  (2012)  P2Y1 receptor activation by photolysis of caged ATP enhances neuronal network activity in the developing olfactory bulb..  Purinergic Signal,  (2): (191-8).  [PMID:22187118]
110. Vaden RJ et al..  (2020)  Parvalbumin interneurons provide spillover to newborn and mature dentate granule cells..  Elife,    [PMID:32602839]
111. Hernández VM et al..  (2015)  Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus..  J Neurosci,  35  (34): (11830-47).  [PMID:26311767]
112. Mouradian GC et al..  (2022)  Patch-to-Seq and Transcriptomic Analyses Yield Molecular Markers of Functionally Distinct Brainstem Serotonin Neurons..  Front Synaptic Neurosci,  14  (910820).  [PMID:35844900]
113. Li S et al..  (2013)  Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus..  Proc Natl Acad Sci U S A,  110  (24): (9980-5).  [PMID:23716673]
114. Tolö J et al..  (2018)  Pathophysiological Consequences of Neuronal a-Synuclein Overexpression: Impacts on Ion Homeostasis, Stress Signaling, Mitochondrial Integrity, and Electrical Activity..  Front Mol Neurosci,  11  (49).  [PMID:29563864]
115. Montalbano A et al..  (2015)  Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons..  PLoS One,  10  (10): (e0140369).  [PMID:26460748]
116. Kaplan JS et al..  (2016)  Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype..  J Neurosci,  36  (35): (9019-25).  [PMID:27581446]
117. Zhao Y & Tzounopoulos T.  (2011)  Physiological activation of cholinergic inputs controls associative synaptic plasticity via modulation of endocannabinoid signaling..  J Neurosci,  31  (9): (3158-68).  [PMID:21368027]
118. Gusev AG & Uteshev VV.  (2010)  Physiological concentrations of choline activate native alpha7-containing nicotinic acetylcholine receptors in the presence of PNU-120596 [1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea]..  J Pharmacol Exp Ther,  332  (2): (588-98).  [PMID:19923442]
119. Leroy F et al..  (2015)  Potassium currents dynamically set the recruitment and firing properties of F-type motoneurons in neonatal mice..  J Neurophysiol,  114  (3): (1963-73).  [PMID:26269551]
120. Cellot G et al..  (2016)  Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice..  Sci Rep,  (31696).  [PMID:27526668]
121. Booker SA et al..  (2020)  Presynaptic GABAB receptors functionally uncouple somatostatin interneurons from the active hippocampal network..  Elife,    [PMID:32073397]
122. Soiza-Reilly M et al..  (2013)  Presynaptic gating of excitation in the dorsal raphe nucleus by GABA..  Proc Natl Acad Sci U S A,  110  (39): (15800-5).  [PMID:24019494]
123. Orts-Del'immagine A et al..  (2012)  Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem..  J Physiol,  590  (16): (3719-41).  [PMID:22570378]
124. Guo C et al..  (2021)  Purkinje cell outputs selectively inhibit a subset of unipolar brush cells in the input layer of the cerebellar cortex..  Elife,  10    [PMID:34369877]
125. Apostolides PF & Trussell LO.  (2013)  Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse..  J Neurosci,  33  (11): (4768-81).  [PMID:23486948]
126. Wang HY et al..  (2015)  RBFOX3/NeuN is Required for Hippocampal Circuit Balance and Function..  Sci Rep,  (17383).  [PMID:26619789]
127. Cellot G & Cherubini E.  (2014)  Reduced inhibitory gate in the barrel cortex of Neuroligin3R451C knock-in mice, an animal model of autism spectrum disorders..  Physiol Rep,  (7):   [PMID:25347860]
128. Khubieh A et al..  (2016)  Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition..  Cereb Cortex,  26  (8): (3357-69).  [PMID:26209846]
129. Oesch NW & Diamond JS.  (2011)  Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells..  Nat Neurosci,  14  (12): (1555-61).  [PMID:22019730]
130. Yekhlef L et al..  (2015)  Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex..  J Neurophysiol,  113  (5): (1616-30).  [PMID:25505119]
131. Atherton JF et al..  (2010)  Selective participation of somatodendritic HCN channels in inhibitory but not excitatory synaptic integration in neurons of the subthalamic nucleus..  J Neurosci,  30  (47): (16025-40).  [PMID:21106841]
132. Tang ZQ & Trussell LO.  (2015)  Serotonergic regulation of excitability of principal cells of the dorsal cochlear nucleus..  J Neurosci,  35  (11): (4540-51).  [PMID:25788672]
133. Burke DA & Alvarez VA.  (2022)  Serotonin receptors contribute to dopamine depression of lateral inhibition in the nucleus accumbens..  Cell Rep,  39  (6): (110795).  [PMID:35545050]
134. Balakrishnan V et al..  (2009)  Slow glycinergic transmission mediated by transmitter pooling..  Nat Neurosci,  12  (3): (286-94).  [PMID:19198604]
135. Kuo SP & Trussell LO.  (2011)  Spontaneous spiking and synaptic depression underlie noradrenergic control of feed-forward inhibition..  Neuron,  71  (2): (306-18).  [PMID:21791289]
136. Avignone E et al..  (2008)  Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling..  J Neurosci,  28  (37): (9133-44).  [PMID:18784294]
137. Apostolides PF & Trussell LO.  (2014)  Superficial stellate cells of the dorsal cochlear nucleus..  Front Neural Circuits,  (63).  [PMID:24959121]
138. Brown JT et al..  (2011)  Synaptic activation of mGluR1 generates persistent depression of a fast after-depolarizing potential in CA3 pyramidal neurons..  Eur J Neurosci,  33  (5): (879-89).  [PMID:21269340]
139. Luo X et al..  (2020)  Synaptic Mechanisms Underlying the Network State-Dependent Recruitment of VIP-Expressing Interneurons in the CA1 Hippocampus..  Cereb Cortex,  30  (6): (3667-3685).  [PMID:32080739]
140. Perez-Rosello T et al..  (2013)  Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis..  J Neurosci,  33  (22): (9259-72).  [PMID:23719795]
141. Studniarczyk D et al..  (2013)  TARP ?-7 selectively enhances synaptic expression of calcium-permeable AMPARs..  Nat Neurosci,  16  (9): (1266-74).  [PMID:23872597]
142. Marchionni I et al..  (2012)  The chemokine CXCL12 and the HIV-1 envelope protein gp120 regulate spontaneous activity of Cajal-Retzius cells in opposite directions..  J Physiol,  590  (13): (3185-202).  [PMID:22473778]
143. Che A et al..  (2013)  The Dyslexia-Associated Gene Dcdc2 Is Required for Spike-Timing Precision in Mouse Neocortex..  Biol Psychiatry,      [PMID:24094509]
144. Weyrer C et al..  (2019)  The Role of CaV2.1 Channel Facilitation in Synaptic Facilitation..  Cell Rep,  26  (9): (2289-2297.e3).  [PMID:30811980]
145. Povysheva NV & Johnson JW.  (2012)  Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons..  J Neurophysiol,  107  (8): (2232-43).  [PMID:22236713]
146. Magno L et al..  (2021)  Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior..  Cell Rep,  35  (11): (109249).  [PMID:34133916]
147. Fossati M et al..  (2019)  Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons..  Neuron,  104  (6): (1081-1094.e7).  [PMID:31704028]
148. Brady JD et al..  (2010)  Vesicular GABA release delays the onset of the Purkinje cell terminal depolarization without affecting tissue swelling in cerebellar slices during simulated ischemia..  Neuroscience,  168  (108-17).  [PMID:20226232]
149. Beeson KA et al..  (2022)  α2δ-2 is required for depolarization-induced suppression of excitation in Purkinje cells..  J Physiol,  600  (111-122).  [PMID:34783012]

Solution Calculators