Determine the necessary mass, volume, or concentration for preparing a solution.
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
SKU | Size | Availability | Price | Qty |
---|---|---|---|---|
I423008-1ml | 1ml | Available within 4-8 weeks(?) Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience! | $49.90 |
Non-specific cAMP and cGMP inhibitor
Synonyms | IBMX | 3-Isobutyl-1-methylxanthine | 28822-58-4 | isobutylmethylxanthine | Methylisobutylxanthine | 1-METHYL-3-ISOBUTYLXANTHINE | 1H-Purine-2,6-dione, 3,7-dihydro-1-methyl-3-(2-methylpropyl)- | 3-Isobutyl-1-methyl-1H-purine-2,6(3H,7H)-dione | 3-isobutyl-1-methylxanthine |
---|---|
Specifications & Purity | Moligand™, 10mM in DMSO |
Biochemical and Physiological Mechanisms | Non-specific cAMP and cGMP inhibitor |
Storage Temp | Store at -80°C |
Shipped In | Ice chest + Ice pads |
Grade | Moligand™ |
Product Description | IBMX is a widely-used non-specific inhibitor of cyclic AMP (cAMP) and cyclic GMP (cGMP) phosphodiesterases (PDEs) (IC50 = 19, 50, 18, 13, 32, 7, and 50 μM for PDE1, PDE2, PDE3, PDE4, PDE5, PDE7, and PDE11, respectively). PDE8A, PDE8B, and PDE9 are insensitive to IBMX. By inhibiting PDEs, IBMX increases cellular cAMP and cGMP levels, activating cyclic-nucleotide-regulated protein kinases. Methylxanthines, including IBMX, caffeine, and theophylline, bind adenosine receptors,typically antagonizing the suppressive effects of natural agonists. |
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Mechanism of Action | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | References |
---|
IUPAC Name | 1-methyl-3-(2-methylpropyl)-7H-purine-2,6-dione |
---|---|
INCHI | InChI=1S/C10H14N4O2/c1-6(2)4-14-8-7(11-5-12-8)9(15)13(3)10(14)16/h5-6H,4H2,1-3H3,(H,11,12) |
InChi Key | APIXJSLKIYYUKG-UHFFFAOYSA-N |
Canonical SMILES | CC(C)CN1C2=C(C(=O)N(C1=O)C)NC=N2 |
Isomeric SMILES | CC(C)CN1C2=C(C(=O)N(C1=O)C)NC=N2 |
WGK Germany | 3 |
RTECS | ZD8500000 |
PubChem CID | 3758 |
Molecular Weight | 222.24 |
Beilstein | 247859 |
Enter Lot Number to search for COA:
Melt Point(°C) | 200-203°C |
---|
Pictogram(s) | GHS07 |
---|---|
Signal | Warning |
Hazard Statements | H302:Harmful if swallowed |
Precautionary Statements | P501:Dispose of contents/container to ... P264:Wash hands [and …] thoroughly after handling. P270:Do not eat, drink or smoke when using this product. P330:Rinse mouth. P301+P317:IF SWALLOWED: Get medical help. |
WGK Germany | 3 |
RTECS | ZD8500000 |
1. Ling Yang, Linzi Li, Qian Lu, Lingfeng Li, Chun Xie, Fakun Jiang, Hongbing Li, Ai Zhao, Qian Wang, Wenyong Xiong. (2023) Alisol B blocks the development of HFD-induced obesity by triggering the LKB1-AMPK signaling in subcutaneous adipose tissue. EUROPEAN JOURNAL OF PHARMACOLOGY, 956 (175942). [PMID:37536624] [10.1016/j.ejphar.2023.175942] |
2. Gui-Bo Liu, Yong-Xia Cheng, Hua-Min Li, Yong Liu, Li-Xin Sun, Qi Wu, Shang-Fu Guo, Ting-Ting Li, Chuan-Ling Dong, Ge Sun. (2023) Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis. Molecular Medicine Reports, 28 (3): (1-14). [PMID:37449526] [10.3892/mmr.2023.13050] |
3. Xinyan Tao, Yuan Liu, Zhenhua Ding, Shuang Xie, Wenxiong Cao, Xiaohong Li. (2023) Injectable cell-targeting fiber rods to promote lipolysis and regulate inflammation for obesity treatment. Biomaterials Science, [PMID:37432672] [10.1039/D3BM00619K] |
4. Yawei Kong, Jianpeng Ao, Qiushu Chen, Wenhua Su, Yinping Zhao, Yiyan Fei, Jiong Ma, Minbiao Ji, Lan Mi. (2023) Evaluating Differentiation Status of Mesenchymal Stem Cells by Label-Free Microscopy System and Machine Learning. Cells, 12 (11): (1524). [PMID:37296645] [10.3390/cells12111524] |
5. Gao Rongyin, Zhang Ximei, Zou Kun, Meng Duo, Lv Jinpeng. (2023) Cryptochrome 1 activation inhibits melanogenesis and melanosome transport through negative regulation of cAMP/PKA/CREB signaling pathway. Frontiers in Pharmacology, 14 [PMID:36814484] [10.3389/fphar.2023.1081030] |
6. Xiaoxue Ren, Xiaoting Gao, Yicheng Cheng, Lingxia Xie, Liping Tong, Wei Li, Paul K. Chu, Huaiyu Wang. (2022) Maintenance of multipotency of bone marrow mesenchymal stem cells on poly(ε-caprolactone) nanoneedle arrays through the enhancement of cell-cell interaction. Frontiers in Bioengineering and Biotechnology, 10 (1076345). [PMID:36698633] [10.3389/fbioe.2022.1076345] |
7. Fei He, Chendong Yang, Haoye Liu, Jizeng Wang. (2023) Changes in the mechanical properties of human mesenchymal stem cells during differentiation. Royal Society Open Science, 10 (1): [PMID:36636310] [10.1098/rsos.220607] |
8. Xiaoyu Cai, Songxue Wang, Huali Wang, Suwen Liu, Guishan Liu, Huibin Chen, Ji Kang, Hao Wang. (2023) Naringenin inhibits lipid accumulation by activating the AMPK pathway in vivo and vitro. Food Science and Human Wellness, 12 (1174). [PMID:] [10.1016/j.fshw.2022.10.043] |
9. Shuai Chen, Yicheng Jiang, Xiaoyang Qi, Peng Song, Liming Tang, Hanyang Liu. (2022) Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery. Adipocyte, 11 (1): (550-561). [PMID:36036283] [10.1080/21623945.2022.2115212] |
10. Zhu Shenglong, Zhang Jingwei, Wang Wei, Jiang Xuan, Chen Yong Q.. (2022) Blockage of NDUFB9-SCD1 pathway inhibits adipogenesis. JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY, 78 (2): (377-388). [PMID:35122619] [10.1007/s13105-022-00876-7] |
11. Zhu Shenglong, Wang Wei, Zhang Jingwei, Ji Siyu, Jing Zhe, Chen Yong Q.. (2022) Slc25a5 regulates adipogenesis by modulating ERK signaling in OP9 cells. CELLULAR & MOLECULAR BIOLOGY LETTERS, 27 (1): (1-13). [PMID:35109789] [10.1186/s11658-022-00314-y] |
12. Jing Zhou, Ji Zhang, Jiayi Li, Yiqiu Guan, Ting Shen, Fu Li, Xueqin Li, Xiaojun Yang, Weicheng Hu. (2021) Ginsenoside F2 Suppresses Adipogenesis in 3T3-L1 Cells and Obesity in Mice via the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 69 (32): (9299–9312). [PMID:34342980] [10.1021/acs.jafc.1c03420] |
13. Lou Hai-xia, Fu Wen-cheng, Chen Jia-xiang, Li Tian-tian, Jiang Ying-ying, Liu Chun-hui, Zhang Wen. (2021) Alisol A 24-acetate stimulates lipolysis in 3 T3-L1 adipocytes. BMC Complementary Medicine and Therapies, 21 (1): (1-11). [PMID:33888116] [10.1186/s12906-021-03296-0] |
14. Zhenhua Ding, Maohua Chen, Xinyan Tao, Yuan Liu, Jie He, Tao Wang, Xiaohong Li. (2021) Synergistic Treatment of Obesity via Locally Promoting Beige Adipogenesis and Antioxidative Defense in Adipose Tissues. ACS Biomaterials Science & Engineering, 7 (2): (727–738). [PMID:33397089] [10.1021/acsbiomaterials.0c01181] |
15. Suwen Liu, Xuedong Chang, Jincheng Yu, Weifeng Xu. (2020) Cerasus humilis Cherry Polyphenol Reduces High-Fat Diet-Induced Obesity in C57BL/6 Mice by Mitigating Fat Deposition, Inflammation, and Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 68 (15): (4424–4436). [PMID:32227855] [10.1021/acs.jafc.0c01617] |
16. Minchi Liu, Wenjun Qian, Selvaraj Subramaniyam, Shuang Liu, Wenkuan Xin. (2020) Denatonium enhanced the tone of denuded rat aorta via bitter taste receptor and phosphodiesterase activation. EUROPEAN JOURNAL OF PHARMACOLOGY, 872 (172951). [PMID:32006560] [10.1016/j.ejphar.2020.172951] |
17. Fiorency Santoso, Bonifasius Putera Sampurna, Yu-Heng Lai, Sung-Tzu Liang, Erwei Hao, Jung-Ren Chen, Chung-Der Hsiao. (2019) Development of a Simple ImageJ-Based Method for Dynamic Blood Flow Tracking in Zebrafish Embryos and Its Application in Drug Toxicity Evaluation. Inventions, 4 (4): (65). [PMID:] [10.3390/inventions4040065] |
18. Kun Feng, Chen Li, Yun-Shan Wei, Min-Hua Zong, Hong Wu, Shuang-Yan Han. (2019) Development of a polysaccharide based multi-unit nanofiber mat for colon-targeted sustained release of salmon calcitonin. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 552 (186). [PMID:31125829] [10.1016/j.jcis.2019.05.037] |
19. Kaimin Wu, Ruiyi Zhang, Yanhui Lu, Lulu Wen, Yanfei Li, Ranran Duan, Yaobing Yao, Yanjie Jia. (2019) Lin28B regulates the fate of grafted mesenchymal stem cells and enhances their protective effects against Alzheimer's disease by upregulating IGF-2. JOURNAL OF CELLULAR PHYSIOLOGY, 234 (12): (21860-21876). [PMID:31066045] [10.1002/jcp.28750] |
20. Zhang Kaina, Zeng Ke, Shen Congcong, Tian Shiyu, Yang Minghui. (2018) Determination of protein kinase A activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe. MICROCHIMICA ACTA, 185 (4): (1-7). [PMID:29594552] [10.1007/s00604-018-2754-1] |
21. Qian Wang, Shuang-ting Wang, Xin Yang, Pan-pan You, Wen Zhang. (2015) Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. NUTRITION RESEARCH, 35 (317). [PMID:25724338] [10.1016/j.nutres.2014.12.009] |
22. Luo M et al.. (2020) Sanguinarine Rapidly Relaxes Rat Airway Smooth Muscle Cells Dependent on TAS2R Signaling.. Biol Pharm Bull, 43 (7): (1027-1034). [PMID:32404582] |
1. Ling Yang, Linzi Li, Qian Lu, Lingfeng Li, Chun Xie, Fakun Jiang, Hongbing Li, Ai Zhao, Qian Wang, Wenyong Xiong. (2023) Alisol B blocks the development of HFD-induced obesity by triggering the LKB1-AMPK signaling in subcutaneous adipose tissue. EUROPEAN JOURNAL OF PHARMACOLOGY, 956 (175942). [PMID:37536624] [10.1016/j.ejphar.2023.175942] |
2. Gui-Bo Liu, Yong-Xia Cheng, Hua-Min Li, Yong Liu, Li-Xin Sun, Qi Wu, Shang-Fu Guo, Ting-Ting Li, Chuan-Ling Dong, Ge Sun. (2023) Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis. Molecular Medicine Reports, 28 (3): (1-14). [PMID:37449526] [10.3892/mmr.2023.13050] |
3. Xinyan Tao, Yuan Liu, Zhenhua Ding, Shuang Xie, Wenxiong Cao, Xiaohong Li. (2023) Injectable cell-targeting fiber rods to promote lipolysis and regulate inflammation for obesity treatment. Biomaterials Science, [PMID:37432672] [10.1039/D3BM00619K] |
4. Yawei Kong, Jianpeng Ao, Qiushu Chen, Wenhua Su, Yinping Zhao, Yiyan Fei, Jiong Ma, Minbiao Ji, Lan Mi. (2023) Evaluating Differentiation Status of Mesenchymal Stem Cells by Label-Free Microscopy System and Machine Learning. Cells, 12 (11): (1524). [PMID:37296645] [10.3390/cells12111524] |
5. Gao Rongyin, Zhang Ximei, Zou Kun, Meng Duo, Lv Jinpeng. (2023) Cryptochrome 1 activation inhibits melanogenesis and melanosome transport through negative regulation of cAMP/PKA/CREB signaling pathway. Frontiers in Pharmacology, 14 [PMID:36814484] [10.3389/fphar.2023.1081030] |
6. Xiaoxue Ren, Xiaoting Gao, Yicheng Cheng, Lingxia Xie, Liping Tong, Wei Li, Paul K. Chu, Huaiyu Wang. (2022) Maintenance of multipotency of bone marrow mesenchymal stem cells on poly(ε-caprolactone) nanoneedle arrays through the enhancement of cell-cell interaction. Frontiers in Bioengineering and Biotechnology, 10 (1076345). [PMID:36698633] [10.3389/fbioe.2022.1076345] |
7. Fei He, Chendong Yang, Haoye Liu, Jizeng Wang. (2023) Changes in the mechanical properties of human mesenchymal stem cells during differentiation. Royal Society Open Science, 10 (1): [PMID:36636310] [10.1098/rsos.220607] |
8. Xiaoyu Cai, Songxue Wang, Huali Wang, Suwen Liu, Guishan Liu, Huibin Chen, Ji Kang, Hao Wang. (2023) Naringenin inhibits lipid accumulation by activating the AMPK pathway in vivo and vitro. Food Science and Human Wellness, 12 (1174). [PMID:] [10.1016/j.fshw.2022.10.043] |
9. Shuai Chen, Yicheng Jiang, Xiaoyang Qi, Peng Song, Liming Tang, Hanyang Liu. (2022) Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery. Adipocyte, 11 (1): (550-561). [PMID:36036283] [10.1080/21623945.2022.2115212] |
10. Zhu Shenglong, Zhang Jingwei, Wang Wei, Jiang Xuan, Chen Yong Q.. (2022) Blockage of NDUFB9-SCD1 pathway inhibits adipogenesis. JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY, 78 (2): (377-388). [PMID:35122619] [10.1007/s13105-022-00876-7] |
11. Zhu Shenglong, Wang Wei, Zhang Jingwei, Ji Siyu, Jing Zhe, Chen Yong Q.. (2022) Slc25a5 regulates adipogenesis by modulating ERK signaling in OP9 cells. CELLULAR & MOLECULAR BIOLOGY LETTERS, 27 (1): (1-13). [PMID:35109789] [10.1186/s11658-022-00314-y] |
12. Jing Zhou, Ji Zhang, Jiayi Li, Yiqiu Guan, Ting Shen, Fu Li, Xueqin Li, Xiaojun Yang, Weicheng Hu. (2021) Ginsenoside F2 Suppresses Adipogenesis in 3T3-L1 Cells and Obesity in Mice via the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 69 (32): (9299–9312). [PMID:34342980] [10.1021/acs.jafc.1c03420] |
13. Lou Hai-xia, Fu Wen-cheng, Chen Jia-xiang, Li Tian-tian, Jiang Ying-ying, Liu Chun-hui, Zhang Wen. (2021) Alisol A 24-acetate stimulates lipolysis in 3 T3-L1 adipocytes. BMC Complementary Medicine and Therapies, 21 (1): (1-11). [PMID:33888116] [10.1186/s12906-021-03296-0] |
14. Zhenhua Ding, Maohua Chen, Xinyan Tao, Yuan Liu, Jie He, Tao Wang, Xiaohong Li. (2021) Synergistic Treatment of Obesity via Locally Promoting Beige Adipogenesis and Antioxidative Defense in Adipose Tissues. ACS Biomaterials Science & Engineering, 7 (2): (727–738). [PMID:33397089] [10.1021/acsbiomaterials.0c01181] |
15. Suwen Liu, Xuedong Chang, Jincheng Yu, Weifeng Xu. (2020) Cerasus humilis Cherry Polyphenol Reduces High-Fat Diet-Induced Obesity in C57BL/6 Mice by Mitigating Fat Deposition, Inflammation, and Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 68 (15): (4424–4436). [PMID:32227855] [10.1021/acs.jafc.0c01617] |
16. Minchi Liu, Wenjun Qian, Selvaraj Subramaniyam, Shuang Liu, Wenkuan Xin. (2020) Denatonium enhanced the tone of denuded rat aorta via bitter taste receptor and phosphodiesterase activation. EUROPEAN JOURNAL OF PHARMACOLOGY, 872 (172951). [PMID:32006560] [10.1016/j.ejphar.2020.172951] |
17. Fiorency Santoso, Bonifasius Putera Sampurna, Yu-Heng Lai, Sung-Tzu Liang, Erwei Hao, Jung-Ren Chen, Chung-Der Hsiao. (2019) Development of a Simple ImageJ-Based Method for Dynamic Blood Flow Tracking in Zebrafish Embryos and Its Application in Drug Toxicity Evaluation. Inventions, 4 (4): (65). [PMID:] [10.3390/inventions4040065] |
18. Kun Feng, Chen Li, Yun-Shan Wei, Min-Hua Zong, Hong Wu, Shuang-Yan Han. (2019) Development of a polysaccharide based multi-unit nanofiber mat for colon-targeted sustained release of salmon calcitonin. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 552 (186). [PMID:31125829] [10.1016/j.jcis.2019.05.037] |
19. Kaimin Wu, Ruiyi Zhang, Yanhui Lu, Lulu Wen, Yanfei Li, Ranran Duan, Yaobing Yao, Yanjie Jia. (2019) Lin28B regulates the fate of grafted mesenchymal stem cells and enhances their protective effects against Alzheimer's disease by upregulating IGF-2. JOURNAL OF CELLULAR PHYSIOLOGY, 234 (12): (21860-21876). [PMID:31066045] [10.1002/jcp.28750] |
20. Zhang Kaina, Zeng Ke, Shen Congcong, Tian Shiyu, Yang Minghui. (2018) Determination of protein kinase A activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe. MICROCHIMICA ACTA, 185 (4): (1-7). [PMID:29594552] [10.1007/s00604-018-2754-1] |
21. Qian Wang, Shuang-ting Wang, Xin Yang, Pan-pan You, Wen Zhang. (2015) Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. NUTRITION RESEARCH, 35 (317). [PMID:25724338] [10.1016/j.nutres.2014.12.009] |
22. Luo M et al.. (2020) Sanguinarine Rapidly Relaxes Rat Airway Smooth Muscle Cells Dependent on TAS2R Signaling.. Biol Pharm Bull, 43 (7): (1027-1034). [PMID:32404582] |