Determine the necessary mass, volume, or concentration for preparing a solution.
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
SKU | Size | Availability | Price | Qty |
---|---|---|---|---|
B275951-1mg | 1mg | Available within 8-12 weeks(?) Production requires sourcing of materials. We appreciate your patience and understanding. | $19.90 | |
B275951-5mg | 5mg | Available within 8-12 weeks(?) Production requires sourcing of materials. We appreciate your patience and understanding. | $180.90 | |
B275951-10mg | 10mg | Available within 8-12 weeks(?) Production requires sourcing of materials. We appreciate your patience and understanding. | $109.90 | |
B275951-25mg | 25mg | Available within 8-12 weeks(?) Production requires sourcing of materials. We appreciate your patience and understanding. | $567.90 | |
B275951-50mg | 50mg | Available within 8-12 weeks(?) Production requires sourcing of materials. We appreciate your patience and understanding. | $354.90 | |
B275951-100mg | 100mg | Available within 8-12 weeks(?) Production requires sourcing of materials. We appreciate your patience and understanding. | $567.90 |
Potent, selective, inhibitor of myosin II
Synonyms | 1,2,3,3a-Tetrahydro-3a-hydroxy-6-methyl-1-phenyl-4H-pyrrolo[2,3-b]quinolin-4-one | 1-Phenyl-1,2,3,4-tetrahydro-4-hydroxypyrrolo(2.3-b)-7-methylquinolin-4-one | CHEBI:75379 | KBioGR_000194 | 6-methyl-3a-oxidanyl-1-phenyl-2,3-dihydropyrrolo[2,3-b]quinolin-4 |
---|---|
Specifications & Purity | ≥99% |
Biochemical and Physiological Mechanisms | Cell-permeable, reversible inhibitor of non-muscle myosin II. Shows high affinity and selectivity for vertebrate and invertebrate Myosin II (IC 50 values 0.5-5 μM). Inhibits actin-activated MgATPase activity and in vitro motility of class II myosins. |
Storage Temp | Protected from light,Store at -20°C,Desiccated |
Shipped In | Ice chest + Ice pads |
Note | Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20°C. Generally, these will be useable for up to one month. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour. Refer to SDS for more information. Need more advice on solubility, usage and handling? Please visit our frequently asked questions (FAQ) page for more details. |
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
IUPAC Name | 3a-hydroxy-6-methyl-1-phenyl-2,3-dihydropyrrolo[2,3-b]quinolin-4-one |
---|---|
INCHI | InChI=1S/C18H16N2O2/c1-12-7-8-15-14(11-12)16(21)18(22)9-10-20(17(18)19-15)13-5-3-2-4-6-13/h2-8,11,22H,9-10H2,1H3 |
InChi Key | LZAXPYOBKSJSEX-UHFFFAOYSA-N |
Canonical SMILES | CC1=CC2=C(C=C1)N=C3C(C2=O)(CCN3C4=CC=CC=C4)O |
Isomeric SMILES | CC1=CC2=C(C=C1)N=C3C(C2=O)(CCN3C4=CC=CC=C4)O |
PubChem CID | 3476986 |
Molecular Weight | 292.34 |
Enter Lot Number to search for COA:
Find and download the COA for your product by matching the lot number on the packaging.
Lot Number | Certificate Type | Date | Item |
---|---|---|---|
B2419568 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419569 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419570 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419571 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419572 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419573 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419574 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419576 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419578 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419579 | Certificate of Analysis | Jan 08, 2024 | B275951 |
B2419580 | Certificate of Analysis | Jan 08, 2024 | B275951 |
Solubility | Soluble in DMSO to 100 mM |
---|---|
Sensitivity | Light sensitive |
Starting at $212.90
Starting at $222.90
Starting at $19.90
1. Chen Li, Zihui Zheng, Xiang Wu, Qiu Xie, Ping Liu, Yunfeng Hu, Mei Chen, Liming Liu, Wangxing Zhao, Linlin Chen, Jun Guo, Ying Song. (2023) Stiff matrix induced srGAP2 tension gradients control migration direction in triple-negative breast cancer. Theranostics, 13 (1): ( 59–76). [PMID:36593959] |
2. Yunfeng Hu, Qiu Xie, Shanshan Chen, Wangxing Zhao, Xudong Zhao, Qinli Ruan, Zihui Zheng, Huanhuan Zhao, Tonghui Ma, Jun Guo, Lei Li. (2022) Par3 promotes breast cancer invasion and migration through pull tension and protein nanoparticle-induced osmotic pressure. BIOMEDICINE & PHARMACOTHERAPY, 155 (113739). [PMID:36179489] |
3. Siyuan Huang, Qi Su, Xiaoqiang Hou, Kuankuan Han, Shufang Ma, Bingshe Xu, Yingjun Yang. (2022) Influence of Colonies’ Morphological Cues on Cellular Uptake Capacity of Nanoparticles. Frontiers in Bioengineering and Biotechnology, 10 (922159). [PMID:35711638] |
1. Bischof J et al.. (2017) A cdk1 gradient guides surface contraction waves in oocytes.. Nat Commun, 8 (849). [PMID:29021609] |
2. Thomas RC et al.. (2016) A Myocardial Slice Culture Model Reveals Alpha-1A-Adrenergic Receptor Signaling in the Human Heart.. JACC Basic Transl Sci, 1 (3): (155-167). [PMID:27453955] |
3. Lyu Y et al.. (2022) Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes.. iScience, 25 (103624). [PMID:35005560] |
4. Stanton AE et al.. (2019) Biochemical Ligand Density Regulates Yes-Associated Protein Translocation in Stem Cells through Cytoskeletal Tension and Integrins.. ACS Appl Mater Interfaces, 11 (9): (8849-8857). [PMID:30789697] |
5. Zhang J et al.. (2020) Aster-C coordinates with COP I vesicles to regulate lysosomal trafficking and activation of mTORC1.. EMBO Rep, 21 (9): (e49898). [PMID:32648345] |
6. Weinberger F et al.. (2016) Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells.. Sci Transl Med, 8 (363): (363ra148). [PMID:27807283] |
7. Wang K et al.. (2015) Cardiac tissue slices: preparation, handling, and successful optical mapping.. Am J Physiol Heart Circ Physiol, 308 (9): (H1112-25). [PMID:25595366] |
8. Lamri L et al.. (2019) Ciliogenesis-coupled accumulation of IFT-B proteins in a novel cytoplasmic compartment.. Genes Cells, 24 (11): (731-745). [PMID:31554018] |
9. Yang Q et al.. (2021) Cell fate coordinates mechano-osmotic forces in intestinal crypt formation.. Nat Cell Biol, 23 (7): (733-744). [PMID:34155381] |
10. Wu N et al.. (2020) Critical Role of Lipid Scramblase TMEM16F in Phosphatidylserine Exposure and Repair of Plasma Membrane after Pore Formation.. Cell Rep, 30 (4): (1129-1140.e5). [PMID:31995754] |
11. Pacitto R et al.. (2017) CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages.. J Leukoc Biol, 101 (3): (683-692). [PMID:28250113] |
12. Scholp AJ et al.. (2022) Force-Bioreactor for Assessing Pharmacological Therapies for Mechanobiological Targets.. Front Bioeng Biotechnol, 10 (907611). [PMID:35928948] |
13. Hu S et al.. (2022) Glycoprotein PTGDS promotes tumorigenesis of diffuse large B-cell lymphoma by MYH9-mediated regulation of Wnt-ß-catenin-STAT3 signaling.. Cell Death Differ, 29 (3): (642-656). [PMID:34743203] |
14. Yoshida S et al.. (2015) Growth factor signaling to mTORC1 by amino acid-laden macropinosomes.. J Cell Biol, 211 (159-72). [PMID:26438830] |
15. Wang F et al.. (2018) Keratin 6 regulates collective keratinocyte migration by altering cell-cell and cell-matrix adhesion.. J Cell Biol, 217 (12): (4314-4330). [PMID:30389720] |
16. Chang ACY et al.. (2021) Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes.. Stem Cell Reports, 16 (9): (2169-2181). [PMID:34019816] |
17. Evans MD et al.. (2017) Myosin II activity is required for structural plasticity at the axon initial segment.. Eur J Neurosci, 46 (2): (1751-1757). [PMID:28452088] |
18. Zhang C et al.. (2021) Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells.. Nat Commun, 12 (6229). [PMID:34711824] |
19. Burton RA et al.. (2012) Microscopic magnetic resonance imaging reveals high prevalence of third coronary artery in human and rabbit heart.. Europace, 14 Suppl 5 (v73-v81). [PMID:23104918] |
20. Zhang XD et al.. (2021) Prestin amplifies cardiac motor functions.. Cell Rep, 35 (5): (109097). [PMID:33951436] |
21. Miri AK et al.. (2018) Permeability mapping of gelatin methacryloyl hydrogels.. Acta Biomater, 77 (38-47). [PMID:30126593] |
22. Zhang XD et al.. (2021) Protocol to assess two distinct components of the nonlinear capacitance in mouse cardiomyocytes.. STAR Protoc, 2 (4): (100891). [PMID:34704077] |
23. Lyu Y et al.. (2022) Protocol to record and quantify the intracellular pH in contracting cardiomyocytes.. STAR Protoc, 3 (2): (101301). [PMID:35463464] |
24. Gong Z et al.. (2021) Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia.. Cell Rep, 35 (4): (109047). [PMID:33909999] |
25. Hu X et al.. (2019) Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia.. Elife, 8 [PMID:31486771] |
26. Zarkoob H et al.. (2018) Substrate deformations induce directed keratinocyte migration.. J R Soc Interface, 15 (143): [PMID:29899159] |
27. Seifert J et al.. (2017) Thrombin-induced cytoskeleton dynamics in spread human platelets observed with fast scanning ion conductance microscopy.. Sci Rep, 7 (4810). [PMID:28684746] |
28. Zhovmer AS et al.. (2019) The role of nonmuscle myosin 2A and 2B in the regulation of mesenchymal cell contact guidance.. Mol Biol Cell, 30 (16): (1961-1973). [PMID:31318315] |
29. Simeonov S & Schäffer TE. (2019) Ultrafast Imaging of Cardiomyocyte Contractions by Combining Scanning Ion Conductance Microscopy with a Microelectrode Array.. Anal Chem, 91 (15): (9648-9655). [PMID:31247725] |
30. Chen Li, Zihui Zheng, Xiang Wu, Qiu Xie, Ping Liu, Yunfeng Hu, Mei Chen, Liming Liu, Wangxing Zhao, Linlin Chen, Jun Guo, Ying Song. (2023) Stiff matrix induced srGAP2 tension gradients control migration direction in triple-negative breast cancer. Theranostics, 13 (1): ( 59–76). [PMID:36593959] |
31. Yunfeng Hu, Qiu Xie, Shanshan Chen, Wangxing Zhao, Xudong Zhao, Qinli Ruan, Zihui Zheng, Huanhuan Zhao, Tonghui Ma, Jun Guo, Lei Li. (2022) Par3 promotes breast cancer invasion and migration through pull tension and protein nanoparticle-induced osmotic pressure. BIOMEDICINE & PHARMACOTHERAPY, 155 (113739). [PMID:36179489] |
32. Siyuan Huang, Qi Su, Xiaoqiang Hou, Kuankuan Han, Shufang Ma, Bingshe Xu, Yingjun Yang. (2022) Influence of Colonies’ Morphological Cues on Cellular Uptake Capacity of Nanoparticles. Frontiers in Bioengineering and Biotechnology, 10 (922159). [PMID:35711638] |