Determine the necessary mass, volume, or concentration for preparing a solution.
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
SKU | Size | Availability | Price | Qty |
---|---|---|---|---|
C119329-100mg | 100mg | Available within 4-8 weeks(?) Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience! | $23.90 | |
C119329-500mg | 500mg | Available within 4-8 weeks(?) Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience! | $90.90 |
Potent endogenous glucocorticoid and mineralocorticoid receptor agonist
Synonyms | (8S,9S,10R,11S,13S,14S,17S)-11-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one | A | HMS3713G06 | (11.beta.)-11,21-Dihydroxypregn-4-ene-3,20-dione | Corticosterone, 1mg/ml in Methanol | N |
---|---|
Specifications & Purity | Moligand™, analytical standard |
Biochemical and Physiological Mechanisms | Corticosterone is a hormone synthesized in response to stress. It binds and activates MCRs(mineralocorticoid receptors) and GRs (glucocorticoid receptors), which results in altered expression. This eventually affects ionic conductances through the membran |
Shipped In | Normal |
Grade | analytical standard, Moligand™ |
Action Type | AGONIST |
Mechanism of action | Agonist of Glucocorticoid receptor;Agonist of Mineralocorticoid receptor |
Note | Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20°C. Generally, these will be useable for up to one month. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour. Need more advice on solubility, usage and handling? Please visit our frequently asked questions (FAQ) page for more details. |
Product Description | Corticosteroid is an activator of MCR. |
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Mechanism of Action | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | References |
---|
IUPAC Name | (8S,9S,10R,11S,13S,14S,17S)-11-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one |
---|---|
INCHI | InChI=1S/C21H30O4/c1-20-8-7-13(23)9-12(20)3-4-14-15-5-6-16(18(25)11-22)21(15,2)10-17(24)19(14)20/h9,14-17,19,22,24H,3-8,10-11H2,1-2H3/t14-,15-,16+,17-,19+,20-,21-/m0/s1 |
InChi Key | OMFXVFTZEKFJBZ-HJTSIMOOSA-N |
Canonical SMILES | CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C)O |
Isomeric SMILES | C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2[C@H](C[C@]4([C@H]3CC[C@@H]4C(=O)CO)C)O |
WGK Germany | 3 |
RTECS | GM7650000 |
PubChem CID | 5753 |
Molecular Weight | 346.46 |
Beilstein | 2339601 |
Enter Lot Number to search for COA:
Find and download the COA for your product by matching the lot number on the packaging.
Lot Number | Certificate Type | Date | Item |
---|---|---|---|
A2329516 | Certificate of Analysis | Jan 11, 2023 | C119329 |
A2329595 | Certificate of Analysis | Jan 11, 2023 | C119329 |
J2430118 | Certificate of Analysis | Jan 11, 2023 | C119329 |
D1922087 | Certificate of Analysis | Dec 09, 2022 | C119329 |
Solubility | Soluble in acetone, methanol, ethanol (10 mM), chloroform, and DMSO (100 mM). Insoluble in water. |
---|---|
Specific Rotation[α] | +221 to +226 deg(C=1, EtOH) |
Melt Point(°C) | 180-183°C |
Pictogram(s) | GHS07 |
---|---|
Signal | Warning |
Hazard Statements | H317:May cause an allergic skin reaction |
Precautionary Statements | P261:Avoid breathing dust/fume/gas/mist/vapors/spray. P280:Wear protective gloves/protective clothing/eye protection/face protection. P302+P352:IF ON SKIN: wash with plenty of water. P321:Specific treatment (see ... on this label). P501:Dispose of contents/container to ... P272:Contaminated work clothing should not be allowed out of the workplace. P333+P313:IF SKIN irritation or rash occurs: Get medical advice/attention. P362+P364:Take off contaminated clothing and wash it before reuse. |
WGK Germany | 3 |
RTECS | GM7650000 |
Merck Index | 2538 |
1. Li M et al.. (2017) Protein Kinase C Mediates the Corticosterone-induced Sensitization of Dorsal Root Ganglion Neurons Innervating the Rat Stomach.. J Neurogastroenterol Motil, 23 (3): (464-476). [PMID:28343377] |
2. Qing Zhu, Yuanshan Han, Ying He, Yilan Fu, Hui Yang, Yun Chen, Yingrui Shi. (2023) Kaempferol Improves Breast Cancer-Related Depression through the COX-2/PGE2 Pathway. Frontiers in Bioscience-Landmark, 28 (11): (311). [PMID:38062826] [10.31083/j.fbl2811311] |
3. Nan Li, Juan Zheng, Lu-Dan Yu, Yuan-Jun Tong, Xinying Gong, Yu Hou, Guosheng Chen, Jianqiao Xu, Fang Zhu, Gangfeng Ouyang. (2024) Green, mildly synthesized bismuth-based MOF for extraction of polar glucocorticoids in environmental water. JOURNAL OF HAZARDOUS MATERIALS, 461 (132477). [PMID:37716268] [10.1016/j.jhazmat.2023.132477] |
4. Junhui He, Dongbo Han, Chunlian Jia, Jiaxiu Xie, Fucui Zhu, Jie Wei, Dongmei Li, Dongmei Wei, Yi Li, Li Tang, Guining Wei, Jing Yan, Yuanming Tong, Lifang Yang, Xuecai Tan. (2023) Integrating Network Pharmacology, Molecular Docking and Pharmacological Evaluation for Exploring the Polyrhachis vicina Rogers in Ameliorating Depression. Drug Design Development and Therapy, [PMID:36923105] [10.2147/DDDT.S399183] |
5. Yuan Baoshi, Shi Kexin, Zha Juanmin, Cai Yujia, Gu Yue, Huang Kai, Yue Wenchang, Zhai Qiaocheng, Ding Ning, Ren Wenyan, He Weiqi, Xu Ying, Wang Tao. (2023) Nuclear receptor modulators inhibit osteosarcoma cell proliferation and tumour growth by regulating the mTOR signaling pathway. Cell Death & Disease, 14 (1): (1-12). [PMID:36681687] [10.1038/s41419-022-05545-7] |
6. Jun Huang, Bin Chen, Hao Wang, Sheng Hu, Xudong Yu, James Reilly, Zhiming He, Yong You, Xinhua Shu. (2022) Dihydromyricetin Attenuates Depressive-like Behaviors in Mice by Inhibiting the AGE-RAGE Signaling Pathway. Cells, 11 (23): (3730). [PMID:36496991] [10.3390/cells11233730] |
7. He Junhui, Li Dongmei, Wei Jie, Wang Sheng, Chu Shifeng, Zhang Zhao, He Fei, Wei Dongmei, Li Yi, Xie Jiaxiu, Lai Kedao, Chen Naihong, Wei Guining. (2022) Mahonia Alkaloids (MA) Ameliorate Depression Induced Gap Junction Dysfunction by miR-205/Cx43 Axis. NEUROCHEMICAL RESEARCH, 47 (12): (3761-3776). [PMID:36222958] [10.1007/s11064-022-03761-3] |
8. Li Sheng, Wang Zhi, Yao Jing Wen, Jiao Hong Chao, Wang Xiao Juan, Lin Hai, Zhao Jing Peng. (2022) Reduced PGC-1β protein expression may underlie corticosterone inhibition of mitochondrial biogenesis and oxidative phosphorylation in chicken muscles. Frontiers in Physiology, 13 [PMID:36311241] [10.3389/fphys.2022.989547] |
9. Sun Jia-Yi, Liu Yi-Tong, Jiang Sheng-Nan, Guo Peng-Mei, Wu Xin-Yu, Yu Jia. (2022) Essential oil from the roots of Paeonia lactiflora pall. has protective effect against corticosterone-induced depression in mice via modulation of PI3K/Akt signaling pathway. Frontiers in Pharmacology, 13 [PMID:36188568] [10.3389/fphar.2022.999712] |
10. Mingfa Sun, Hongchao Jiao, Jingpeng Zhao, Xiaojuan Wang, Haifang Li, Yunlei Zhou, Hai Lin. (2022) Research Note: Creatine monohydrate alleviates protein breakdown induced by corticosterone via inhibiting ubiquitin proteasome pathway in chicken myotubes. POULTRY SCIENCE, 101 (102177). [PMID:36194918] [10.1016/j.psj.2022.102177] |
11. Yumin Liu, Ziqi Hu, Jing Wang, Yanjun Liao, Luan Shu. (2022) Puerarin alleviates depressive-like behaviors in high-fat diet-induced diabetic mice via modulating hippocampal GLP-1R/BDNF/TrkB signaling. NUTRITIONAL NEUROSCIENCE, [PMID:36039913] [10.1080/1028415X.2022.2112439] |
12. Wang Yan, Zhou Sixu, Song Xujiao, Ding Shanshan, Wang Baogui, Wen Jiangfeng, Chen Chunlin. (2022) Study on Antidepressant Effect and Mechanism of Crocin Mediated by the mTOR Signaling Pathway. NEUROCHEMICAL RESEARCH, 47 (10): (3126-3136). [PMID:35804209] [10.1007/s11064-022-03668-z] |
13. Chai Yuhui, Cai Yawen, Fu Yu, Wang Yingdi, Zhang Yiming, Zhang Xue, Zhu Lingpeng, Miao Mingxing, Yan Tianhua. (2022) Salidroside Ameliorates Depression by Suppressing NLRP3-Mediated Pyroptosis via P2X7/NF-κB/NLRP3 Signaling Pathway. Frontiers in Pharmacology, 13 [PMID:35496273] [10.3389/fphar.2022.812362] |
14. Jie Liu, Yi Cheng, Yuanjin Zhang, Shengbo Huang, Zongjun Liu, Xin Wang. (2021) Lactobacillus rhamnosus induces CYP3A and changes the pharmacokinetics of verapamil in rats. TOXICOLOGY LETTERS, 352 (46). [PMID:34600097] [10.1016/j.toxlet.2021.09.010] |
15. Huina Li, Kefan Wu, Yue Zhang, Ning Li, Kaijin Wang. (2020) Crassifoside H ameliorates depressant behavior in chronic unpredictable mild stress rats by improving HPA axis dysfunction and inhibiting inflammation in hippocampus. TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 19 (8): (1693-1699). [PMID:] [10.4314/tjpr.v19i8.18] |
16. Lan Zhang, Yue Yang, Lei Di, Jun-long Li, Ning Li. (2020) Erxian decoction, a famous Chinese medicine formula, antagonizes corticosterone-induced injury in PC12 cells, and improves depression-like behaviours in mice. PHARMACEUTICAL BIOLOGY, 58 (1): (498-509). [PMID:32476554] [10.1080/13880209.2020.1765812] |
17. Jingjing Liu, Ning Xu, Hong Men, Shuang Li, Yanli Lu, Sze Shin Low, Xin Li, Lihang Zhu, Chen Cheng, Gang Xu, Qingjun Liu. (2020) Salivary Cortisol Determination on Smartphone-Based Differential Pulse Voltammetry System. SENSORS, 20 (5): (1422). [PMID:32150916] [10.3390/s20051422] |
18. Zhang Yingyi, Li Liang, Wang Qi, Shen Mei, Han Weili, Yang Xuemei, Chen Lingyun, Ma Ande, Zhou Zhengzheng. (2019) Simultaneous determination of metabolic and elemental markers in methamphetamine-induced hepatic injury to rats using LC-MS/MS and ICP-MS. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 411 (15): (3361-3372). [PMID:31119349] [10.1007/s00216-019-01810-5] |
19. Li-Tao Yi, Rong-Hao Mu, Shu-Qi Dong, Shuang-Shuang Wang, Cheng-Fu Li, Di Geng, Qing Liu. (2018) miR-124 antagonizes the antidepressant-like effects of standardized gypenosides in mice. JOURNAL OF PSYCHOPHARMACOLOGY, [PMID:29484897] [10.1177/0269881118758304] |
20. He Xiaolie, Yang Li, Wang Mei, Zhuang Xizhen, Huang Ruiqi, Zhu Rongrong, Wang Shilong. (2017) Targeting the Endocannabinoid/CB1 Receptor System For Treating Major Depression Through Antidepressant Activities of Curcumin and Dexanabinol-Loaded Solid Lipid Nanoparticles. CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 42 (6): (2281-2294). [PMID:28848078] [10.1159/000480001] |
21. Mei Yang, Youning Ma, Wenjun Gui, Yiping Ren, Guonian Zhu, Yihua Liu. (2015) Determination of 26 endocrine disrupting chemicals in fish and water using modified QuEChERS combined with solid-phase extraction and UHPLC-MS/MS. Analytical Methods, 7 (19): (8418-8431). [PMID:] [10.1039/C5AY01082A] |
22. Zhijing Song,Huanyu Gao,Wenchun Xie,Qing Sun,Kai Liang,Yan Li. (2020-12-29) Quantitative MALDI-MS assay of steroid hormones in plasma based on hydroxylamine derivatization.. Analytical biochemistry, 616 (114089-114089). [PMID:33359147] |
23. Ang W, Chen G, Xiong L, Chang Y, Pi W, Liu Y, Li C, Zheng J, Zhou L, Yang B, Deng Y, Yang S, Luo Y, Wei Y.. (2014) Synthesis and biological evaluation of novel naphthalene compounds as potential antidepressant agents.. Eur J Med Chem, 82 (263-273). [PMID:24915002] [10.1016/j.ejmech.2014.05.061] |
1. Zhang B et al.. (2020) Corticosteroid receptor rebalancing alleviates critical illness-related corticosteroid insufficiency after traumatic brain injury by promoting paraventricular nuclear cell survival via Akt/CREB/BDNF signaling.. J Neuroinflammation, 17 (318). [PMID:33100225] |
2. Perry RJ et al.. (2015) Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes.. Cell, 160 (4): (745-758). [PMID:25662011] |
3. Gao C et al.. (2022) Naringin Mediates Adult Hippocampal Neurogenesis for Antidepression via Activating CREB Signaling.. Front Cell Dev Biol, 10 (731831). [PMID:35478969] |
4. Li M et al.. (2017) Protein Kinase C Mediates the Corticosterone-induced Sensitization of Dorsal Root Ganglion Neurons Innervating the Rat Stomach.. J Neurogastroenterol Motil, 23 (3): (464-476). [PMID:28343377] |
5. Zhang B et al.. (2021) The Dual Dose-Dependent Effects of Corticosterone on Hippocampal Cell Apoptosis After Traumatic Brain Injury Depend on the Activation Ratio of Mineralocorticoid Receptors to Glucocorticoid Receptors.. Front Pharmacol, 12 (713715). [PMID:34381366] |
6. Qing Zhu, Yuanshan Han, Ying He, Yilan Fu, Hui Yang, Yun Chen, Yingrui Shi. (2023) Kaempferol Improves Breast Cancer-Related Depression through the COX-2/PGE2 Pathway. Frontiers in Bioscience-Landmark, 28 (11): (311). [PMID:38062826] [10.31083/j.fbl2811311] |
7. Nan Li, Juan Zheng, Lu-Dan Yu, Yuan-Jun Tong, Xinying Gong, Yu Hou, Guosheng Chen, Jianqiao Xu, Fang Zhu, Gangfeng Ouyang. (2024) Green, mildly synthesized bismuth-based MOF for extraction of polar glucocorticoids in environmental water. JOURNAL OF HAZARDOUS MATERIALS, 461 (132477). [PMID:37716268] [10.1016/j.jhazmat.2023.132477] |
8. Junhui He, Dongbo Han, Chunlian Jia, Jiaxiu Xie, Fucui Zhu, Jie Wei, Dongmei Li, Dongmei Wei, Yi Li, Li Tang, Guining Wei, Jing Yan, Yuanming Tong, Lifang Yang, Xuecai Tan. (2023) Integrating Network Pharmacology, Molecular Docking and Pharmacological Evaluation for Exploring the Polyrhachis vicina Rogers in Ameliorating Depression. Drug Design Development and Therapy, [PMID:36923105] [10.2147/DDDT.S399183] |
9. Yuan Baoshi, Shi Kexin, Zha Juanmin, Cai Yujia, Gu Yue, Huang Kai, Yue Wenchang, Zhai Qiaocheng, Ding Ning, Ren Wenyan, He Weiqi, Xu Ying, Wang Tao. (2023) Nuclear receptor modulators inhibit osteosarcoma cell proliferation and tumour growth by regulating the mTOR signaling pathway. Cell Death & Disease, 14 (1): (1-12). [PMID:36681687] [10.1038/s41419-022-05545-7] |
10. Jun Huang, Bin Chen, Hao Wang, Sheng Hu, Xudong Yu, James Reilly, Zhiming He, Yong You, Xinhua Shu. (2022) Dihydromyricetin Attenuates Depressive-like Behaviors in Mice by Inhibiting the AGE-RAGE Signaling Pathway. Cells, 11 (23): (3730). [PMID:36496991] [10.3390/cells11233730] |
11. He Junhui, Li Dongmei, Wei Jie, Wang Sheng, Chu Shifeng, Zhang Zhao, He Fei, Wei Dongmei, Li Yi, Xie Jiaxiu, Lai Kedao, Chen Naihong, Wei Guining. (2022) Mahonia Alkaloids (MA) Ameliorate Depression Induced Gap Junction Dysfunction by miR-205/Cx43 Axis. NEUROCHEMICAL RESEARCH, 47 (12): (3761-3776). [PMID:36222958] [10.1007/s11064-022-03761-3] |
12. Li Sheng, Wang Zhi, Yao Jing Wen, Jiao Hong Chao, Wang Xiao Juan, Lin Hai, Zhao Jing Peng. (2022) Reduced PGC-1β protein expression may underlie corticosterone inhibition of mitochondrial biogenesis and oxidative phosphorylation in chicken muscles. Frontiers in Physiology, 13 [PMID:36311241] [10.3389/fphys.2022.989547] |
13. Sun Jia-Yi, Liu Yi-Tong, Jiang Sheng-Nan, Guo Peng-Mei, Wu Xin-Yu, Yu Jia. (2022) Essential oil from the roots of Paeonia lactiflora pall. has protective effect against corticosterone-induced depression in mice via modulation of PI3K/Akt signaling pathway. Frontiers in Pharmacology, 13 [PMID:36188568] [10.3389/fphar.2022.999712] |
14. Mingfa Sun, Hongchao Jiao, Jingpeng Zhao, Xiaojuan Wang, Haifang Li, Yunlei Zhou, Hai Lin. (2022) Research Note: Creatine monohydrate alleviates protein breakdown induced by corticosterone via inhibiting ubiquitin proteasome pathway in chicken myotubes. POULTRY SCIENCE, 101 (102177). [PMID:36194918] [10.1016/j.psj.2022.102177] |
15. Yumin Liu, Ziqi Hu, Jing Wang, Yanjun Liao, Luan Shu. (2022) Puerarin alleviates depressive-like behaviors in high-fat diet-induced diabetic mice via modulating hippocampal GLP-1R/BDNF/TrkB signaling. NUTRITIONAL NEUROSCIENCE, [PMID:36039913] [10.1080/1028415X.2022.2112439] |
16. Wang Yan, Zhou Sixu, Song Xujiao, Ding Shanshan, Wang Baogui, Wen Jiangfeng, Chen Chunlin. (2022) Study on Antidepressant Effect and Mechanism of Crocin Mediated by the mTOR Signaling Pathway. NEUROCHEMICAL RESEARCH, 47 (10): (3126-3136). [PMID:35804209] [10.1007/s11064-022-03668-z] |
17. Chai Yuhui, Cai Yawen, Fu Yu, Wang Yingdi, Zhang Yiming, Zhang Xue, Zhu Lingpeng, Miao Mingxing, Yan Tianhua. (2022) Salidroside Ameliorates Depression by Suppressing NLRP3-Mediated Pyroptosis via P2X7/NF-κB/NLRP3 Signaling Pathway. Frontiers in Pharmacology, 13 [PMID:35496273] [10.3389/fphar.2022.812362] |
18. Jie Liu, Yi Cheng, Yuanjin Zhang, Shengbo Huang, Zongjun Liu, Xin Wang. (2021) Lactobacillus rhamnosus induces CYP3A and changes the pharmacokinetics of verapamil in rats. TOXICOLOGY LETTERS, 352 (46). [PMID:34600097] [10.1016/j.toxlet.2021.09.010] |
19. Huina Li, Kefan Wu, Yue Zhang, Ning Li, Kaijin Wang. (2020) Crassifoside H ameliorates depressant behavior in chronic unpredictable mild stress rats by improving HPA axis dysfunction and inhibiting inflammation in hippocampus. TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 19 (8): (1693-1699). [PMID:] [10.4314/tjpr.v19i8.18] |
20. Lan Zhang, Yue Yang, Lei Di, Jun-long Li, Ning Li. (2020) Erxian decoction, a famous Chinese medicine formula, antagonizes corticosterone-induced injury in PC12 cells, and improves depression-like behaviours in mice. PHARMACEUTICAL BIOLOGY, 58 (1): (498-509). [PMID:32476554] [10.1080/13880209.2020.1765812] |
21. Jingjing Liu, Ning Xu, Hong Men, Shuang Li, Yanli Lu, Sze Shin Low, Xin Li, Lihang Zhu, Chen Cheng, Gang Xu, Qingjun Liu. (2020) Salivary Cortisol Determination on Smartphone-Based Differential Pulse Voltammetry System. SENSORS, 20 (5): (1422). [PMID:32150916] [10.3390/s20051422] |
22. Zhang Yingyi, Li Liang, Wang Qi, Shen Mei, Han Weili, Yang Xuemei, Chen Lingyun, Ma Ande, Zhou Zhengzheng. (2019) Simultaneous determination of metabolic and elemental markers in methamphetamine-induced hepatic injury to rats using LC-MS/MS and ICP-MS. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 411 (15): (3361-3372). [PMID:31119349] [10.1007/s00216-019-01810-5] |
23. Li-Tao Yi, Rong-Hao Mu, Shu-Qi Dong, Shuang-Shuang Wang, Cheng-Fu Li, Di Geng, Qing Liu. (2018) miR-124 antagonizes the antidepressant-like effects of standardized gypenosides in mice. JOURNAL OF PSYCHOPHARMACOLOGY, [PMID:29484897] [10.1177/0269881118758304] |
24. He Xiaolie, Yang Li, Wang Mei, Zhuang Xizhen, Huang Ruiqi, Zhu Rongrong, Wang Shilong. (2017) Targeting the Endocannabinoid/CB1 Receptor System For Treating Major Depression Through Antidepressant Activities of Curcumin and Dexanabinol-Loaded Solid Lipid Nanoparticles. CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 42 (6): (2281-2294). [PMID:28848078] [10.1159/000480001] |
25. Mei Yang, Youning Ma, Wenjun Gui, Yiping Ren, Guonian Zhu, Yihua Liu. (2015) Determination of 26 endocrine disrupting chemicals in fish and water using modified QuEChERS combined with solid-phase extraction and UHPLC-MS/MS. Analytical Methods, 7 (19): (8418-8431). [PMID:] [10.1039/C5AY01082A] |
26. Zhijing Song,Huanyu Gao,Wenchun Xie,Qing Sun,Kai Liang,Yan Li. (2020-12-29) Quantitative MALDI-MS assay of steroid hormones in plasma based on hydroxylamine derivatization.. Analytical biochemistry, 616 (114089-114089). [PMID:33359147] |
27. Ang W, Chen G, Xiong L, Chang Y, Pi W, Liu Y, Li C, Zheng J, Zhou L, Yang B, Deng Y, Yang S, Luo Y, Wei Y.. (2014) Synthesis and biological evaluation of novel naphthalene compounds as potential antidepressant agents.. Eur J Med Chem, 82 (263-273). [PMID:24915002] [10.1016/j.ejmech.2014.05.061] |