Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
ETHER
ID: ALA16264
Max Phase: Phase
Molecular Formula: C4H10O
Molecular Weight: 74.12
Molecule Type: Small molecule
Associated Items:
ID: ALA16264
Max Phase: Phase
Molecular Formula: C4H10O
Molecular Weight: 74.12
Molecule Type: Small molecule
Associated Items:
Synonyms (9): Anaesthetic ether | Ether | Ether anaesthesicus | Etherum | Ethyl ether | Ethyl oxide | Pronarcol | Solvent ether | NSC-100036
Synonyms from Alternative Forms(9):
Canonical SMILES: CCOCC
Standard InChI: InChI=1S/C4H10O/c1-3-5-4-2/h3-4H2,1-2H3
Standard InChI Key: RTZKZFJDLAIYFH-UHFFFAOYSA-N
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Natural Product: No | Oral: No | Chemical Probe: No | Parenteral: No |
Molecule Type: Small molecule | Topical: No | First In Class: No | Black Box: No |
Chirality: Yes | Availability: No | Prodrug: No |
MESH ID | MESH Heading | EFO IDs | EFO Terms | Max Phase for Indication | References |
---|
Mechanism of Action | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | References |
---|
Molecular Weight: 74.12 | Molecular Weight (Monoisotopic): 74.0732 | AlogP: 1.04 | #Rotatable Bonds: 2 |
Polar Surface Area: 9.23 | Molecular Species: NEUTRAL | HBA: 1 | HBD: 0 |
#RO5 Violations: 0 | HBA (Lipinski): 1 | HBD (Lipinski): 0 | #RO5 Violations (Lipinski): 0 |
CX Acidic pKa: | CX Basic pKa: | CX LogP: 0.84 | CX LogD: 0.84 |
Aromatic Rings: 0 | Heavy Atoms: 5 | QED Weighted: 0.48 | Np Likeness Score: -0.44 |
1. Jorgensen WL, Duffy EM.. (2000) Prediction of drug solubility from Monte Carlo simulations., 10 (11): [PMID:10866370] [10.1016/s0960-894x(00)00172-4] |
2. Wilson LY, Famini GR.. (1991) Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices., 34 (5): [PMID:2033592] [10.1021/jm00109a021] |
3. Ghose AK, Crippen GM.. (1985) Use of physicochemical parameters in distance geometry and related three-dimensional quantitative structure-activity relationships: a demonstration using Escherichia coli dihydrofolate reductase inhibitors., 28 (3): [PMID:3882967] [10.1021/jm00381a013] |
4. Lombardo F, Blake JF, Curatolo WJ.. (1996) Computation of brain-blood partitioning of organic solutes via free energy calculations., 39 (24): [PMID:8941388] [10.1021/jm960163r] |
5. Toulmin A, Wood JM, Kenny PW.. (2008) Toward prediction of alkane/water partition coefficients., 51 (13): [PMID:18558667] [10.1021/jm701549s] |
6. Abraham MH, Ibrahim A, Acree WE.. (2008) Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs., 43 (3): [PMID:17544548] [10.1016/j.ejmech.2007.04.002] |
7. USP Dictionary of USAN and International Names (2010 edition) and USAN registrations 2007-date, |
8. Fujita T, Nishioka T, Nakajima M.. (1977) Hydrogen-bonding parameter and its significance in quantitative structure--activity studies., 20 (8): [PMID:894678] [10.1021/jm00218a017] |
9. WHO Anatomical Therapeutic Chemical Classification, |
10. Unpublished dataset, |
11. Bedoya M, Rinné S, Kiper AK, Decher N, González W, Ramírez D.. (2019) TASK Channels Pharmacology: New Challenges in Drug Design., 62 (22): [PMID:31260312] [10.1021/acs.jmedchem.9b00248] |
Source(4):