1. Strobl GR, von Kruedener S, Stöckigt J, Guengerich FP, Wolff T.. (1993) Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modeling and inhibition studies., 36 (9): [PMID:8487254] [10.1021/jm00061a004] |
2. Sloan JW, Martin WR, Hook R, Hernandez J.. (1985) Structure-activity relationships of some pyridine, piperidine, and pyrrolidine analogues for enhancing and inhibiting the binding of (+/-)-[3H]nicotine to the rat brain P2 preparation., 28 (9): [PMID:4032427] [10.1021/jm00147a021] |
3. Zheng G, Horton DB, Deaciuc AG, Dwoskin LP, Crooks PA.. (2006) Des-keto lobeline analogs with increased potency and selectivity at dopamine and serotonin transporters., 16 (19): [PMID:16905316] [10.1016/j.bmcl.2006.07.070] |
4. Vartak AP, Nickell JR, Chagkutip J, Dwoskin LP, Crooks PA.. (2009) Pyrrolidine analogues of lobelane: relationship of affinity for the dihydrotetrabenazine binding site with function of the vesicular monoamine transporter 2 (VMAT2)., 52 (23): [PMID:19691331] [10.1021/jm900770h] |
5. Hojahmat M, Horton DB, Norrholm SD, Miller DK, Grinevich VP, Deaciuc AG, Dwoskin LP, Crooks PA.. (2010) Lobeline esters as novel ligands for neuronal nicotinic acetylcholine receptors and neurotransmitter transporters., 18 (2): [PMID:20036131] [10.1016/j.bmc.2009.12.002] |
6. PubChem BioAssay data set, |
7. Kruhlak NL, Choi SS, Contrera JF, Weaver JL, Willard JM, Hastings KL, Sancilio LF.. (2008) Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models., 18 (2): [PMID:20020916] [10.1080/15376510701857262] |
8. Vasudevan SR, Moore JB, Schymura Y, Churchill GC.. (2012) Shape-based reprofiling of FDA-approved drugs for the H₁ histamine receptor., 55 (16): [PMID:22793499] [10.1021/jm300671m] |
9. TOMIZAWA M, YAMAMOTO I. (1992) Binding of Nicotinoids and the Related Compounds to the Insect Nicotinic Acetyicholine Receptor, 17 (4): [10.1584/jpestics.17.4_231] |
10. TOMIZAWA M, OTSUKA H, MIYAMOTO T, YAMAMOTO I. (1995) Pharmacological Effects of Imidacloprid and Its Related Compounds on the Nicotinic Acetyicholine Receptor with Its Ion Channel from the Torpedo Electric Organ, 20 (1): [10.1584/jpestics.20.49] |
11. TOMIZAWA M, OTSUKA H, MIYAMOTO T, ELDEFRAWI ME, YAMAMOTO I. (1995) Pharmacological Characteristics of Insect Nicotinic Acetyicholine Receptor with Its Ion Channel and the Comparison of the Effect of Nicotinoids and Neonicotinoids, 20 (1): [10.1584/jpestics.20.57] |
12. Tomassoli I, Gündisch D.. (2015) The twin drug approach for novel nicotinic acetylcholine receptor ligands., 23 (15): [PMID:26142318] [10.1016/j.bmc.2015.06.034] |
13. Bach TB, Jensen AA, Petersen JG, Sørensen TE, Della Volpe S, Liu J, Blaazer AR, van Muijlwijk-Koezen JE, Balle T, Frølund B.. (2015) Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane., 102 [PMID:26301559] [10.1016/j.ejmech.2015.07.024] |
14. Wasilewicz A, Kirchweger B, Bojkova D, Abi Saad MJ, Langeder J, Bütikofer M, Adelsberger S, Grienke U, Cinatl J, Petermann O, Scapozza L, Orts J, Kirchmair J, Rabenau HF, Rollinger JM.. (2023) Identification of Natural Products Inhibiting SARS-CoV-2 by Targeting Viral Proteases: A Combined in Silico and in Vitro Approach., 86 (2.0): [PMID:36651644] [10.1021/acs.jnatprod.2c00843] |
15. Khadilkar A, Bunch ZL, Wagoner J, Ravindran V, Oda JM, Vidar WS, Clark TN, Manwill PK, Todd DA, Barr SA, Olinger LK, Fink SL, Strangman WK, Linington RG, MacMillan JB, Cech NB, Polyak SJ.. (2023) Modulation of in Vitro SARS-CoV-2 Infection by Stephania tetrandra and Its Alkaloid Constituents., 86 (4): [PMID:37043739] [10.1021/acs.jnatprod.3c00159] |