1. Wilson LY, Famini GR.. (1991) Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices., 34 (5): [PMID:2033592] [10.1021/jm00109a021] |
2. Yasuda Y, Tochikubo K, Hachisuka Y, Tomida H, Ikeda K.. (1982) Quantitative structure-inhibitory activity relationships of phenols and fatty acids for Bacillus subtilis spore germination., 25 (3): [PMID:6802973] [10.1021/jm00345a016] |
3. Ghose AK, Crippen GM.. (1985) Use of physicochemical parameters in distance geometry and related three-dimensional quantitative structure-activity relationships: a demonstration using Escherichia coli dihydrofolate reductase inhibitors., 28 (3): [PMID:3882967] [10.1021/jm00381a013] |
4. Cardozo MG, Iimura Y, Sugimoto H, Yamanishi Y, Hopfinger AJ.. (1992) QSAR analyses of the substituted indanone and benzylpiperidine rings of a series of indanone-benzylpiperidine inhibitors of acetylcholinesterase., 35 (3): [PMID:1738151] [10.1021/jm00081a022] |
5. Caron G, Ermondi G.. (2005) Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk)., 48 (9): [PMID:15857133] [10.1021/jm048980b] |
6. Selassie CD, Kapur S, Verma RP, Rosario M.. (2005) Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study., 48 (23): [PMID:16279782] [10.1021/jm050567w] |
7. Selassie CD, Kapur S, Verma RP, Rosario M.. (2005) Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study., 48 (23): [PMID:16279782] [10.1021/jm050567w] |
8. Lee JS, Cho YS, Park EJ, Kim J, Oh WK, Lee HS, Ahn JS.. (1998) Phospholipase Cgamma1 inhibitory principles from the sarcotestas of Ginkgo biloba., 61 (7): [PMID:9677265] [10.1021/np970367q] |
9. Lorimer SD, Perry NB, Tangney RS.. (1993) An antifungal bibenzyl from the New Zealand liverwort, Plagiochila stephensoniana. Bioactivity-directed isolation, synthesis, and analysis., 56 (9): [PMID:8254344] [10.1021/np50099a002] |
10. Pérez-Garrido A, Morales Helguera A, Abellán Guillén A, Cordeiro MN, Garrido Escudero A.. (2009) Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins., 17 (2): [PMID:19056282] [10.1016/j.bmc.2008.11.040] |
11. PubChem BioAssay data set, |
12. PubChem BioAssay data set, |
13. USP Dictionary of USAN and International Names (2010 edition) and USAN registrations 2007-date, |
14. PubChem BioAssay data set, |
15. PubChem BioAssay data set, |
16. PubChem BioAssay data set, |
17. Fujita T, Nishioka T, Nakajima M.. (1977) Hydrogen-bonding parameter and its significance in quantitative structure--activity studies., 20 (8): [PMID:894678] [10.1021/jm00218a017] |
18. Kubinyi H.. (1976) Quantitative structure-activity relationships. 2. A mixed approach, based on Hansch and Free-Wilson Analysis., 19 (5): [PMID:818381] [10.1021/jm00227a004] |
19. Malak LG, Ibrahim MA, Bishay DW, Abdel-baky AM, Moharram AM, Tekwani B, Cutler SJ, Ross SA.. (2014) Antileishmanial metabolites from Geosmithia langdonii., 77 (9): [PMID:25084548] [10.1021/np5000473] |
20. Katie Heiser, Peter F. McLean, Chadwick T. Davis, Ben Fogelson, Hannah B. Gordon, Pamela Jacobson, Brett Hurst, Ben Miller, Ronald W. Alfa, Berton A. Earnshaw, Mason L. Victors, Yolanda T. Chong, Imran S. Haque, Adeline S. Low, Christopher C. Gibson. (2020) Identification of potential treatments for COVID-19 through artificial intelligence-enabled phenomic analysis of human cells infected with SARS-CoV-2, [10.1101/2020.04.21.054387] |