ID: ALA575294

Max Phase: Preclinical

Molecular Formula: C12H12BrNO3

Molecular Weight: 298.14

Molecule Type: Small molecule

Associated Items:

Representations

Canonical SMILES:  O=C(Cc1ccc(Br)cc1)N[C@H]1CCOC1=O

Standard InChI:  InChI=1S/C12H12BrNO3/c13-9-3-1-8(2-4-9)7-11(15)14-10-5-6-17-12(10)16/h1-4,10H,5-7H2,(H,14,15)/t10-/m0/s1

Standard InChI Key:  ARMCPRYGJUZWON-JTQLQIEISA-N

Associated Targets(non-human)

Transcriptional activator protein traR 147 Activities

Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID

Transcriptional activator protein lasR 432 Activities

Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID

Pseudomonas aeruginosa 123386 Activities

Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID

Transcriptional activator protein luxR 400 Activities

Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID

Molecule Features

Natural Product: NoOral: NoChemical Probe: NoParenteral: No
Molecule Type: Small moleculeTopical: NoFirst In Class: NoBlack Box: No
Chirality: NoAvailability: NoProdrug: No

Drug Indications

MESH IDMESH Heading EFO IDsEFO TermsMax Phase for IndicationReferences

Mechanisms of Action

Mechanism of ActionAction Typetarget IDTarget NameTarget TypeTarget OrganismBinding Site NameReferences

Properties

Molecular Weight: 298.14Molecular Weight (Monoisotopic): 297.0001AlogP: 1.42#Rotatable Bonds: 3
Polar Surface Area: 55.40Molecular Species: NEUTRALHBA: 3HBD: 1
#RO5 Violations: 0HBA (Lipinski): 4HBD (Lipinski): 1#RO5 Violations (Lipinski): 0
CX Acidic pKa: 11.71CX Basic pKa: CX LogP: 1.52CX LogD: 1.52
Aromatic Rings: 1Heavy Atoms: 17QED Weighted: 0.86Np Likeness Score: -0.66

References

1. Ahumedo M, Díaz A, Vivas-Reyes R..  (2010)  Theoretical and structural analysis of the active site of the transcriptional regulators LasR and TraR, using molecular docking methodology for identifying potential analogues of acyl homoserine lactones (AHLs) with anti-quorum sensing activity.,  45  (2): [PMID:19945196] [10.1016/j.ejmech.2009.11.004]
2. O'Brien KT, Noto JG, Nichols-O'Neill L, Perez LJ..  (2015)  Potent Irreversible Inhibitors of LasR Quorum Sensing in Pseudomonas aeruginosa.,  (2): [PMID:25699144] [10.1021/ml500459f]
3. Capilato JN, Philippi SV, Reardon T, McConnell A, Oliver DC, Warren A, Adams JS, Wu C, Perez LJ..  (2017)  Development of a novel series of non-natural triaryl agonists and antagonists of the Pseudomonas aeruginosa LasR quorum sensing receptor.,  25  (1): [PMID:27825554] [10.1016/j.bmc.2016.10.021]
4. Soukarieh F, Williams P, Stocks MJ, Cámara M..  (2018)  Pseudomonas aeruginosa Quorum Sensing Systems as Drug Discovery Targets: Current Position and Future Perspectives.,  61  (23): [PMID:29999316] [10.1021/acs.jmedchem.8b00540]
5. Hossain MA, Sattenapally N, Parikh HI, Li W, Rumbaugh KP, German NA..  (2020)  Design, synthesis, and evaluation of compounds capable of reducing Pseudomonas aeruginosa virulence.,  185  [PMID:31706639] [10.1016/j.ejmech.2019.111800]
6. Chbib C..  (2020)  Impact of the structure-activity relationship of AHL analogues on quorum sensing in Gram-negative bacteria.,  28  (3): [PMID:31918952] [10.1016/j.bmc.2019.115282]
7. Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, Titz A..  (2016)  Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections.,  59  (13): [PMID:26804741] [10.1021/acs.jmedchem.5b01698]

Source