Determine the necessary mass, volume, or concentration for preparing a solution.
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
SKU | Size | Availability | Price | Qty |
---|---|---|---|---|
N129532-100mg | 100mg | Available within 4-8 weeks(?) Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience! | $94.90 | |
N129532-250mg | 250mg | Available within 4-8 weeks(?) Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience! | $213.90 | |
N129532-1g | 1g | In stock | $769.90 | |
N129532-5g | 5g | In stock | $3,462.90 |
Excitotoxic amino acid
Synonyms | NINDS_000392 | CHEBI:31882 | (R)-2-(Methylamino)succinic acid hydrochloride | KBio2_007072 | NCGC00015666-01 | (2R)-2-(methylamino)butanedioic acid | SR-01000597701-1 | Tox21_500775 | (R)-2-Ethylbutannedioic acid | UNII-1903B9Q6PI | (R)-2-(Methylamino)suc |
---|---|
Specifications & Purity | Moligand™, ≥98% |
Biochemical and Physiological Mechanisms | Excitotoxic amino acid. Prototypic agonist at the ionotropic NMDA glutamate receptor which is involved in long-term potentiation, ischemia, and epilepsy. Also available in Kit: Ionotropic agonists . Also available in simple stock solutions ( a |
Storage Temp | Store at -20°C |
Shipped In | Ice chest + Ice pads |
Grade | Moligand™ |
Action Type | AGONIST |
Mechanism of action | Agonist of GluN1;Agonist of GluN2A;Agonist of GluN2B;Agonist of GluN2C;Agonist of GluN2D |
Note | Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20°C. Generally, these will be useable for up to one month. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour. Refer to SDS for further information Need more advice on solubility, usage and handling? Please visit our frequently asked questions (FAQ) page for more details. |
Product Description | N-Methyl-D-Aspartic acid (NMDA) is a synthetic agonist of the NMDA receptor that mimics the binding action of the endogenous ligand glutamate. The NMDA receptor is a voltage-gated ion channel intimately involved in spatial learning and memory, and perturbing the normal behavior of this receptor system with NMDA exposure has facilitated elucidation of NMDA receptor-mediated activities. |
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Mechanism of Action | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | References |
---|
IUPAC Name | (2R)-2-(methylamino)butanedioic acid |
---|---|
INCHI | InChI=1S/C5H9NO4/c1-6-3(5(9)10)2-4(7)8/h3,6H,2H2,1H3,(H,7,8)(H,9,10)/t3-/m1/s1 |
InChi Key | HOKKHZGPKSLGJE-GSVOUGTGSA-N |
Canonical SMILES | CNC(CC(=O)O)C(=O)O |
Isomeric SMILES | CN[C@H](CC(=O)O)C(=O)O |
RTECS | CI9457000 |
PubChem CID | 22880 |
Molecular Weight | 147.13 |
Beilstein | 1724431 |
Reaxy-Rn | 1724431 |
PubChem CID | 22880 |
---|---|
Wikipedia | NMDA |
ChEBI | CHEBI:164776 |
CAS Registry No. | 6384-92-5 |
ChEMBL Ligand | CHEMBL291278 |
RCSB PDB Ligand | OEM |
Enter Lot Number to search for COA:
Find and download the COA for your product by matching the lot number on the packaging.
Lot Number | Certificate Type | Date | Item |
---|---|---|---|
B2209146 | Certificate of Analysis | Nov 15, 2023 | N129532 |
C1918144 | Certificate of Analysis | Nov 18, 2022 | N129532 |
K2216300 | Certificate of Analysis | Nov 18, 2022 | N129532 |
L1419013 | Certificate of Analysis | Jul 18, 2022 | N129532 |
Solubility | DMSO 5 mg/mL Water 30 mg/mL Ethanol <1 mg/mL |
---|---|
Specific Rotation[α] | -15° (C=2,H2O) |
Melt Point(°C) | 178 °C |
RTECS | CI9457000 |
---|---|
Reaxy-Rn | 1724431 |
Merck Index | 6662 |
1. Ting Ma, Xiaoxuan Wang, Ting Yu, Juan Liu, Zheqiong Yang, Jinlei Xi. (2023) Oxytetracycline changes the behavior of zebrafish larvae by inhibiting NMDA receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 262 (115344). [PMID:37567108] [10.1016/j.ecoenv.2023.115344] |
2. Meixi He, Yi Wang, Xiaozhe Zhang, Lihua Zhang. (2023) Exploration of the potential neuroprotective compounds targeting GluN1-GluN2B NMDA receptors. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, [PMID:36591642] [10.1080/07391102.2022.2159527] |
3. Meixi He, Yingang Feng, Yi Wang, Mengchun Cheng, Xiaozhe Zhang, Lihua Zhang. (2022) Discovery of a cysteine-rich peptide with glycation modification from Achyranthes bidentata Blume. FITOTERAPIA, 163 (105338). [PMID:36270560] [10.1016/j.fitote.2022.105338] |
1. Kiragasi B et al.. (2017) A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation.. Cell Rep, 19 (13): (2694-2706). [PMID:28658618] |
2. Girling KD et al.. (2018) Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity.. J Neurosci Res, 96 (3): (391-406). [PMID:29193273] |
3. Chamma I et al.. (2013) Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons.. J Neurosci, 33 (39): (15488-503). [PMID:24068817] |
4. Sanchez AB et al.. (2016) Antiretrovirals, Methamphetamine, and HIV-1 Envelope Protein gp120 Compromise Neuronal Energy Homeostasis in Association with Various Degrees of Synaptic and Neuritic Damage.. Antimicrob Agents Chemother, 60 (168-79). [PMID:26482305] |
5. Ho JW et al.. (2011) Contributions of area Te2 to rat recognition memory.. Learn Mem, 18 (7): (493-501). [PMID:21700715] |
6. Zhang S et al.. (2013) Critical role of increased PTEN nuclear translocation in excitotoxic and ischemic neuronal injuries.. J Neurosci, 33 (18): (7997-8008). [PMID:23637190] |
7. Špirková A et al.. (2022) Glutamate can act as a signaling molecule in mouse preimplantation embryos†.. Biol Reprod, 107 (4): (916-927). [PMID:35746896] |
8. Grosser S et al.. (2014) Hilar somatostatin interneurons contribute to synchronized GABA activity in an in vitro epilepsy model.. PLoS One, 9 (e86250). [PMID:24465989] |
9. Thaney VE et al.. (2017) IFNß Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.. Sci Rep, 7 (46514). [PMID:28425451] |
10. Ledonne A et al.. (2014) Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons.. Mol Psychiatry, [PMID:25266126] |
11. Bowers MS et al.. (2020) NYX-2925 induces metabotropic N-methyl-d-aspartate receptor (NMDAR) signaling that enhances synaptic NMDAR and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor.. J Neurochem, 152 (5): (523-541). [PMID:31376158] |
12. Feligioni M et al.. (2009) Protein SUMOylation modulates calcium influx and glutamate release from presynaptic terminals.. Eur J Neurosci, 29 (7): (1348-56). [PMID:19344328] |
13. Ramakrishnan L et al.. (2013) Riluzole attenuates the effects of chemoconvulsants acting on glutamatergic and GABAergic neurotransmission in the planarian Dugesia tigrina.. Eur J Pharmacol, 718 (1-3): (493-501). [PMID:23872399] |
14. Sims RE et al.. (2013) Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.. PLoS One, 8 (e53814). [PMID:23326515] |
15. Kiragasi B et al.. (2020) The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation.. Proc Natl Acad Sci U S A, 117 (41): (25830-25839). [PMID:32973097] |
16. Incontro S et al.. (2013) The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells.. Biochim Biophys Acta, 1833 (8): (1820-31). [PMID:23545413] |
17. Mohr C et al.. (2010) Young age and low temperature, but not female gender delay ATP loss and glutamate release, and protect Purkinje cells during simulated ischemia in cerebellar slices.. Neuropharmacology, 58 (2): (392-403). [PMID:19825379] |
18. Ting Ma, Xiaoxuan Wang, Ting Yu, Juan Liu, Zheqiong Yang, Jinlei Xi. (2023) Oxytetracycline changes the behavior of zebrafish larvae by inhibiting NMDA receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 262 (115344). [PMID:37567108] [10.1016/j.ecoenv.2023.115344] |
19. Meixi He, Yi Wang, Xiaozhe Zhang, Lihua Zhang. (2023) Exploration of the potential neuroprotective compounds targeting GluN1-GluN2B NMDA receptors. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, [PMID:36591642] [10.1080/07391102.2022.2159527] |
20. Meixi He, Yingang Feng, Yi Wang, Mengchun Cheng, Xiaozhe Zhang, Lihua Zhang. (2022) Discovery of a cysteine-rich peptide with glycation modification from Achyranthes bidentata Blume. FITOTERAPIA, 163 (105338). [PMID:36270560] [10.1016/j.fitote.2022.105338] |