1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. (2002) The protein kinase complement of the human genome.. Science, 298 (5600): (1912-34). [PMID:12471243] [10.1021/op500134e] |
2. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C et al.. (2007) Patterns of somatic mutation in human cancer genomes.. Nature, 446 (7132): (153-8). [PMID:17344846] [10.1021/op500134e] |
3. Tan L, Gurbani D, Weisberg EL, Jones DS, Rao S, Singer WD, Bernard FM, Mowafy S, Jenney A, Du G et al.. (2017) Studies of TAK1-centered polypharmacology with novel covalent TAK1 inhibitors.. Bioorg Med Chem, 25 (4): (1320-1328). [PMID:28038940] [10.1021/op500134e] |
4. Zhang H, Xu L, Qin X, Chen X, Cong H, Hu L, Chen L, Miao Z, Zhang W, Cai Z et al.. (2019) N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK-632) Analogues as Novel Necroptosis Inhibitors by Targeting Receptor-Interacting Protein Kinase 3 (RIPK3): Synthesis, Structure-Activity Relationships, and in Vivo Efficacy.. J Med Chem, 62 (14): (6665-6681). [PMID:31095385] [10.1021/op500134e] |
5. Smith GP, Badolo L, Chell V, Chen IJ, Christensen KV, David L, Daechsel JA, Hentzer M, Herzig MC, Mikkelsen GK, Watson SP, Williamson DS.. (2017) The design and SAR of a novel series of 2-aminopyridine based LRRK2 inhibitors.. Bioorg Med Chem Lett, 27 (18): (4500-4505). [PMID:28802631] [10.1016/j.bmcl.2017.07.072] |
6. Zhuang C, Chen F.. (2020) Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives.. J Med Chem, 63 (4): (1490-1510). [PMID:31622096] [10.1021/acs.jmedchem.9b01317] |
7. Martin, Joel J and 121 more authors.. (2004) The sequence and analysis of duplication-rich human chromosome 16.. Nature, (23): [PMID:15616553] |
8. Daub, Henrik H and 9 more authors.. (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.. Molecular cell, (8): [PMID:18691976] |
9. Mayya, Viveka V and 7 more authors.. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.. Science signaling, (18): [PMID:19690332] |
10. Sun, Liming L and 10 more authors.. (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase.. Cell, (20): [PMID:22265413] |
11. Wang, Zhigao Z, Jiang, Hui H, Chen, She S, Du, Fenghe F and Wang, Xiaodong X.. (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways.. Cell, (20): [PMID:22265414] |
12. Zhao, Jie J and 6 more authors.. (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis.. Proceedings of the National Academy of Sciences of the United States of America, (3): [PMID:22421439] |
13. Xie, Tian T and 5 more authors.. (2013) Structural insights into RIP3-mediated necroptotic signaling.. Cell reports, (17): [PMID:24095729] |
14. Murphy, James M JM and 10 more authors.. (2014) Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL.. The Biochemical journal, (1): [PMID:24219132] |
15. Cai, Zhenyu Z and 8 more authors.. (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis.. Nature cell biology, [PMID:24316671] |
16. Choi, Seung-Won SW and 10 more authors.. (2018) PELI1 Selectively Targets Kinase-Active RIP3 for Ubiquitylation-Dependent Proteasomal Degradation.. Molecular cell, (7): [PMID:29883609] |
17. Dovey, Cole M CM and 17 more authors.. (2018) MLKL Requires the Inositol Phosphate Code to Execute Necroptosis.. Molecular cell, (7): [PMID:29883610] |