Recombinant PI 3 Kinase p85 alpha ​Antibody - Primary antibody, specific to PIK3R1, Rabbit IgG

    Application:
  • IF/ICC
  • WB
Features and benefits
  • Host species: Rabbit
  • Species reactivity(Reacts with): Hamster,Mouse,Rat
  • Isotype: Rabbit IgG
  • Conjugation: Unconjugated
Item Number
Ab121772
Grouped product items
SKUSizeAvailabilityPrice Qty
Ab121772-10μl
10μl
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$69.90
Ab121772-50μl
50μl
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
$207.90
Ab121772-100μl
100μl
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
$297.90
Ab121772-1ml
1ml
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$2,697.90

Recombinant; Rabbit anti Human PIK3R1 Antibody; WB, ICC, IF; Unconjugated

Basic Description

Product NameRecombinant PI 3 Kinase p85 alpha ​Antibody - Primary antibody, specific to PIK3R1, Rabbit IgG
SynonymsPIK3R1 | GRB1 | Phosphatidylinositol 3-kinase regulatory subunit alpha | PI3-kinase regulatory subunit alpha | PI3K regulatory subunit alpha | PtdIns-3-kinase regulatory subunit alpha | Phosphatidylinositol 3-kinase 85 kDa regulatory subunit alpha | PI3-k
Specifications & PurityExactAb™, Validated, Recombinant, 1.0 mg/mL
Host speciesRabbit
SpecificityPIK3R1
ImmunogenA synthetic peptide derived from human PI 3 Kinase p85 alpha (AA 601-619).
Positive ControlWB:Jurkat, C6, CHO-K1 lysates; Rat Brain. ICC/IF: MCF-7
ConjugationUnconjugated
GradeExactAb™, Recombinant, Validated
Product Description

Rabbit anti Human PIK3R1 Antibody, Recombinant, could be used for WB, ICC, IF and so on.

Application:

WB: 1/500-1/1000

ICC/IF: 1/50-1/200

Protein Function

Binds to activated (phosphorylated) protein-Tyr kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Necessary for the insulin-stimulated increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues.


Product Properties

IsotypeRabbit IgG
SDS-PAGE150 kDa
Purification MethodImmunogen affinity purified
FormLiquid
Concentration1.0 mg/mL
Storage TempStore at -20°C,Avoid repeated freezing and thawing
Shipped InIce chest + Ice pads
Stability And StorageStore at 4°C short term (1-2 weeks). Store at -20°C long term (24 months). Upon delivery aliquot. Avoid freeze/thaw cycle.

Images

Recombinant PI 3 Kinase p85 alpha Antibody (Ab121772) - Western Blot
All lanes: Recombinant PI 3 Kinase p85 alpha Antibody (Ab121772) at 1/1000 dilution
Samples: Lysates at 20 µg per lane
Secondary: Goat Anti-Rabbit IgG H&L (HRP) (Ab170144) at 1/50000 dilution

Predicted band size: 85 kDa
Observed band size: 84 kDa
Exposure time: 2.5 s

Recombinant PI 3 Kinase p85 alpha Antibody (Ab121772) - ICC/IF
Immunocytochemistry analysis of PI 3 Kinase p85 alpha (green) in MCF7 cells using Recombinant PI 3 Kinase p85 alpha Antibody (Ab121772) and cells were counterstained with DAPI (blue).

Associated Targets(Human)

PIK3R1 Tchem Phosphatidylinositol 3-kinase regulatory subunit alpha (0 Activities)
Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)
PIK3R1 Tchem PI3-kinase p85-alpha subunit (279 Activities)
Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID
PIK3R1 Tchem PI3-kinase p110-delta/p85-alpha (1508 Activities)
Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID
PIK3R1 Tchem PI3-kinase p110-alpha/p85-alpha (2589 Activities)
Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID
PIK3R1 Tchem PI3K p110 beta/p85 alpha (919 Activities)
Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID
PIK3R1 Tchem PI3-kinase class I (432 Activities)
Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID

Mechanisms of Action

Mechanism of ActionAction Typetarget IDTarget NameTarget TypeTarget OrganismBinding Site NameReferences

Application

ApplicationDilution info
WB1/500-1/1000

">

1/500-1/1000

IF/ICC1/50 - 1/200

">

1/50 - 1/200

Certificates

Certificate of Analysis(COA)

Enter Lot Number to search for COA:

Find and download the COA for your product by matching the lot number on the packaging.

2 results found

Lot NumberCertificate TypeDateItem
ZJ23F0800836Certificate of AnalysisAug 17, 2023 Ab121772
ZJ23F0800837Certificate of AnalysisAug 17, 2023 Ab121772

Related Documents

References

1. Ballou LM, Selinger ES, Choi JY, Drueckhammer DG, Lin RZ.  (2007)  Inhibition of mammalian target of rapamycin signaling by 2-(morpholin-1-yl)pyrimido[2,1-alpha]isoquinolin-4-one..  J Biol Chem,  282  (33): (24463-70).  [PMID:17562705] [10.1021/op500134e]
2. Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM et al..  (2010)  Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer..  J Med Chem,  53  (19): (7146-55).  [PMID:20860370] [10.1021/op500134e]
3. Liu Q, Wang J, Kang SA, Thoreen CC, Hur W, Ahmed T, Sabatini DM, Gray NS.  (2011)  Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer..  J Med Chem,  54  (5): (1473-80).  [PMID:21322566] [10.1021/op500134e]
4. Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, Cavazzana M, Picard C, Durandy A, Fischer A et al..  (2014)  A human immunodeficiency caused by mutations in the PIK3R1 gene..  J Clin Invest,  124  (9): (3923-8).  [PMID:25133428] [10.1021/op500134e]
5. Pemberton N, Mogemark M, Arlbrandt S, Bold P, Cox RJ, Gardelli C, Holden NS, Karabelas K, Karlsson J, Lever S et al..  (2018)  Discovery of Highly Isoform Selective Orally Bioavailable Phosphoinositide 3-Kinase (PI3K)-γ Inhibitors..  J Med Chem,  61  (12): (5435-5441).  [PMID:29852070] [10.1021/op500134e]
6. Castro-Falcón G, Seiler GS, Demir Ö, Rathinaswamy MK, Hamelin D, Hoffmann RM, Makowski SL, Letzel AC, Field SJ, Burke JE et al..  (2018)  Neolymphostin A Is a Covalent Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitor That Employs an Unusual Electrophilic Vinylogous Ester..  J Med Chem,  61  (23): (10463-10472).  [PMID:30380865] [10.1021/op500134e]
7. Perry MWD, Abdulai R, Mogemark M, Petersen J, Thomas MJ, Valastro B, Westin Eriksson A.  (2019)  Evolution of PI3Kγ and δ Inhibitors for Inflammatory and Autoimmune Diseases..  J Med Chem,  62  (10): (4783-4814).  [PMID:30582813] [10.1021/op500134e]
8. Yin L, Li H, Liu W, Yao Z, Cheng Z, Zhang H, Zou H.  (2018)  A highly potent CDK4/6 inhibitor was rationally designed to overcome blood brain barrier in gliobastoma therapy..  Eur J Med Chem,  144  (13): (1-28).  [PMID:29247857] [10.1021/op500134e]
9. Xiang HY, Wang X, Chen YH, Zhang X, Tan C, Wang Y, Su Y, Gao ZW, Chen XY, Xiong B et al..  (2021)  Identification of methyl (5-(6-((4-(methylsulfonyl)piperazin-1-yl)methyl)-4-morpholinopyrrolo[2,1-f][1,2,4]triazin-2-yl)-4-(trifluoromethyl)pyridin-2-yl)carbamate (CYH33) as an orally bioavailable, highly potent, PI3K alpha inhibitor for the treatment of advanced solid tumors..  Eur J Med Chem,  209  (13): (112913).  [PMID:33109399] [10.1021/op500134e]
10. Kamilia M Amin,Amal A M Eissa,Sahar M Abou-Seri,Fadi M Awadallah,Ghaneya S Hassan.  (2013-01-08)  Synthesis and biological evaluation of novel coumarin-pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents..  European journal of medicinal chemistry,  60  (187-198).  [PMID:23291120]
11. Golubovskaya VM, Nyberg C, Zheng M, Kweh F, Magis A, Ostrov D, Cance WG..  (2008)  A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the y397 site of focal adhesion kinase decreases tumor growth..  J Med Chem,  51  (23): (7405-7416).  [PMID:18989950] [10.1021/jm800483v]
12. Qiao L, Choi S, Case A, Gainer TG, Seyb K, Glicksman MA, Lo DC, Stein RL, Cuny GD..  (2009)  Structure-activity relationship study of EphB3 receptor tyrosine kinase inhibitors..  Bioorg Med Chem Lett,  19  (21): (6122-6126).  [PMID:19783434] [10.1016/j.bmcl.2009.09.010]
13. Probst GD, Bowers S, Sealy JM, Truong AP, Hom RK, Galemmo RA, Konradi AW, Sham HL, Quincy DA, Pan H, Yao N, Lin M, Tóth G, Artis DR, Zmolek W, Wong K, Qin A, Lorentzen C, Nakamura DF, Quinn KP, Sauer JM, Powell K, Ruslim L, Wright S, Chereau D, Ren Z, Anderson JP, Bard F, Yednock TA, Griswold-Prenner I..  (2011)  Highly selective c-Jun N-terminal kinase (JNK) 2 and 3 inhibitors with in vitro CNS-like pharmacokinetic properties prevent neurodegeneration..  Bioorg Med Chem Lett,  21  (1): (315-319).  [PMID:21112785] [10.1016/j.bmcl.2010.11.010]
14. Liu Q, Wang J, Kang SA, Thoreen CC, Hur W, Choi HG, Waller DL, Sim T, Sabatini DM, Gray NS..  (2011)  Discovery and optimization of potent and selective benzonaphthyridinone analogs as small molecule mTOR inhibitors with improved mouse microsome stability..  Bioorg Med Chem Lett,  21  (13): (4036-4040).  [PMID:21621413] [10.1016/j.bmcl.2011.04.129]
15. Cuny GD, Ulyanova NP, Patnaik D, Liu JF, Lin X, Auerbach K, Ray SS, Xian J, Glicksman MA, Stein RL, Higgins JM..  (2012)  Structure-activity relationship study of beta-carboline derivatives as haspin kinase inhibitors..  Bioorg Med Chem Lett,  22  (5): (2015-2019).  [PMID:22335895] [10.1016/j.bmcl.2012.01.028]
16. Norman MH, Andrews KL, Bo YY, Booker SK, Caenepeel S, Cee VJ, D'Angelo ND, Freeman DJ, Herberich BJ, Hong FT, Jackson CL, Jiang J, Lanman BA, Liu L, McCarter JD, Mullady EL, Nishimura N, Pettus LH, Reed AB, Miguel TS, Smith AL, Stec MM, Tadesse S, Tasker A, Aidasani D, Zhu X, Subramanian R, Tamayo NA, Wang L, Whittington DA, Wu B, Wu T, Wurz RP, Yang K, Zalameda L, Zhang N, Hughes PE..  (2012)  Selective class I phosphoinositide 3-kinase inhibitors: optimization of a series of pyridyltriazines leading to the identification of a clinical candidate, AMG 511..  J Med Chem,  55  (17): (7796-7816).  [PMID:22897589] [10.1021/jm300846z]
17. Garofalo AW, Adler M, Aubele DL, Bowers S, Franzini M, Goldbach E, Lorentzen C, Neitz RJ, Probst GD, Quinn KP, Santiago P, Sham HL, Tam D, Truong AP, Ye XM, Ren Z..  (2013)  Novel cinnoline-based inhibitors of LRRK2 kinase activity..  Bioorg Med Chem Lett,  23  (1): (71-74).  [PMID:23219325] [10.1016/j.bmcl.2012.11.021]
18. Garofalo AW, Adler M, Aubele DL, Brigham EF, Chian D, Franzini M, Goldbach E, Kwong GT, Motter R, Probst GD, Quinn KP, Ruslim L, Sham HL, Tam D, Tanaka P, Truong AP, Ye XM, Ren Z..  (2013)  Discovery of 4-alkylamino-7-aryl-3-cyanoquinoline LRRK2 kinase inhibitors..  Bioorg Med Chem Lett,  23  (7): (1974-1977).  [PMID:23453068] [10.1016/j.bmcl.2013.02.041]
19. Bowers S, Truong AP, Ye M, Aubele DL, Sealy JM, Neitz RJ, Hom RK, Chan W, Dappen MS, Galemmo RA, Konradi AW, Sham HL, Zhu YL, Beroza P, Tonn G, Zhang H, Hoffman J, Motter R, Fauss D, Tanaka P, Bova MP, Ren Z, Tam D, Ruslim L, Baker J, Pandya D, Diep L, Fitzgerald K, Artis DR, Anderson JP, Bergeron M..  (2013)  Design and synthesis of highly selective, orally active Polo-like kinase-2 (Plk-2) inhibitors..  Bioorg Med Chem Lett,  23  (9): (2743-2749).  [PMID:23522834] [10.1016/j.bmcl.2013.02.065]
20. Temburnikar KW, Zimmermann SC, Kim NT, Ross CR, Gelbmann C, Salomon CE, Wilson GM, Balzarini J, Seley-Radtke KL..  (2014)  Antiproliferative activities of halogenated thieno[3,2-d]pyrimidines..  Bioorg Med Chem,  22  (7): (2113-2122).  [PMID:24631358] [10.1016/j.bmc.2014.02.033]
21. Sestito S, Nesi G, Daniele S, Martelli A, Digiacomo M, Borghini A, Pietra D, Calderone V, Lapucci A, Falasca M, Parrella P, Notarangelo A, Breschi MC, Macchia M, Martini C, Rapposelli S..  (2015)  Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme..  Eur J Med Chem,  105  (274-288).  [PMID:26498573] [10.1016/j.ejmech.2015.10.020]
22. Damm-Ganamet KL, Bembenek SD, Venable JW, Castro GG, Mangelschots L, Peeters DC, Mcallister HM, Edwards JP, Disepio D, Mirzadegan T..  (2016)  A Prospective Virtual Screening Study: Enriching Hit Rates and Designing Focus Libraries To Find Inhibitors of PI3Kδ and PI3Kγ..  J Med Chem,  59  (9): (4302-4313).  [PMID:27043133] [10.1021/acs.jmedchem.5b01974]
23. Kim H, Lee C, Yang JS, Choi S, Park CH, Kang JS, Oh SJ, Yun J, Kim MH, Han G..  (2016)  Structural modifications at the 6-position of thieno[2,3-d]pyrimidines and their effects on potency at FLT3 for treatment of acute myeloid leukemia..  Eur J Med Chem,  120  (74-85).  [PMID:27187860] [10.1016/j.ejmech.2016.05.022]
24. Yadav RR, Guru SK, Joshi P, Mahajan G, Mintoo MJ, Kumar V, Bharate SS, Mondhe DM, Vishwakarma RA, Bhushan S, Bharate SB..  (2016)  6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors..  Eur J Med Chem,  122  (731-743).  [PMID:27479483] [10.1016/j.ejmech.2016.07.006]
25. Miller MS, Maheshwari S, McRobb FM, Kinzler KW, Amzel LM, Vogelstein B, Gabelli SB..  (2017)  Identification of allosteric binding sites for PI3Kα oncogenic mutant specific inhibitor design..  Bioorg Med Chem,  25  (4): (1481-1486).  [PMID:28129991] [10.1016/j.bmc.2017.01.012]
26. Tassini S, Sun L, Lanko K, Crespan E, Langron E, Falchi F, Kissova M, Armijos-Rivera JI, Delang L, Mirabelli C, Neyts J, Pieroni M, Cavalli A, Costantino G, Maga G, Vergani P, Leyssen P, Radi M..  (2017)  Discovery of Multitarget Agents Active as Broad-Spectrum Antivirals and Correctors of Cystic Fibrosis Transmembrane Conductance Regulator for Associated Pulmonary Diseases..  J Med Chem,  60  (4): (1400-1416).  [PMID:28122178] [10.1021/acs.jmedchem.6b01521]
27. Shi Y, Park J, Lagisetti C, Zhou W, Sambucetti LC, Webb TR..  (2017)  A triple exon-skipping luciferase reporter assay identifies a new CLK inhibitor pharmacophore..  Bioorg Med Chem Lett,  27  (3): (406-412).  [PMID:28049589] [10.1016/j.bmcl.2016.12.056]
28. Perreault S, Chandrasekhar J, Cui ZH, Evarts J, Hao J, Kaplan JA, Kashishian A, Keegan KS, Kenney T, Koditek D, Lad L, Lepist EI, McGrath ME, Patel L, Phillips B, Therrien J, Treiberg J, Yahiaoui A, Phillips G..  (2017)  Discovery of a Phosphoinositide 3-Kinase (PI3K) β/δ Inhibitor for the Treatment of Phosphatase and Tensin Homolog (PTEN) Deficient Tumors: Building PI3Kβ Potency in a PI3Kδ-Selective Template by Targeting Nonconserved Asp856..  J Med Chem,  60  (4): (1555-1567).  [PMID:28106991] [10.1021/acs.jmedchem.6b01821]
29. Mao B, Gao S, Weng Y, Zhang L, Zhang L..  (2017)  Design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine derivatives as mTOR inhibitors..  Eur J Med Chem,  129  (135-150).  [PMID:28235701] [10.1016/j.ejmech.2017.02.015]
30. Beaufils F, Cmiljanovic N, Cmiljanovic V, Bohnacker T, Melone A, Marone R, Jackson E, Zhang X, Sele A, Borsari C, Mestan J, Hebeisen P, Hillmann P, Giese B, Zvelebil M, Fabbro D, Williams RL, Rageot D, Wymann MP..  (2017)  5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology..  J Med Chem,  60  (17): (7524-7538).  [PMID:28829592] [10.1021/acs.jmedchem.7b00930]
31. Castanedo GM, Blaquiere N, Beresini M, Bravo B, Brightbill H, Chen J, Cui HF, Eigenbrot C, Everett C, Feng J, Godemann R, Gogol E, Hymowitz S, Johnson A, Kayagaki N, Kohli PB, Knüppel K, Kraemer J, Krüger S, Loke P, McEwan P, Montalbetti C, Roberts DA, Smith M, Steinbacher S, Sujatha-Bhaskar S, Takahashi R, Wang X, Wu LC, Zhang Y, Staben ST..  (2017)  Structure-Based Design of Tricyclic NF-κB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K)..  J Med Chem,  60  (2): (627-640).  [PMID:28005357] [10.1021/acs.jmedchem.6b01363]
32. Van Dort ME, Galbán S, Nino CA, Hong H, Apfelbaum AA, Luker GD, Thurber GM, Atangcho L, Besirli CG, Ross BD..  (2017)  Structure-Guided Design and Initial Studies of a Bifunctional MEK/PI3K Inhibitor (ST-168)..  ACS Med Chem Lett,  (8): (808-813).  [PMID:28835793] [10.1021/acsmedchemlett.7b00111]
33. Reiersølmoen AC, Han J, Sundby E, Hoff BH..  (2018)  Identification of fused pyrimidines as interleukin 17 secretion inhibitors..  Eur J Med Chem,  155  (562-578).  [PMID:29909341] [10.1016/j.ejmech.2018.06.019]
34. Fan YH, Li W, Liu DD, Bai MX, Song HR, Xu YN, Lee S, Zhou ZP, Wang J, Ding HW..  (2017)  Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2-a]pyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors..  Eur J Med Chem,  139  (95-106).  [PMID:28800461] [10.1016/j.ejmech.2017.07.074]
35. Shen S, He X, Yang Z, Zhang L, Liu Y, Zhang Z, Wang W, Liu W, Li Y, Huang D, Sun K, Ni X, Yang X, Chu X, Cui Y, Lv Q, Lan J, Zhou F..  (2018)  Discovery of an Orally Bioavailable Dual PI3K/mTOR Inhibitor Based on Sulfonyl-Substituted Morpholinopyrimidines..  ACS Med Chem Lett,  (7): (719-724).  [PMID:30034607] [10.1021/acsmedchemlett.8b00167]
36. Fan YH, Ding HW, Liu DD, Song HR, Xu YN, Wang J..  (2018)  Novel 4-aminoquinazoline derivatives induce growth inhibition, cell cycle arrest and apoptosis via PI3Kα inhibition..  Bioorg Med Chem,  26  (8): (1675-1685).  [PMID:29475582] [10.1016/j.bmc.2018.02.015]
37. Liu L, Shi B, Li X, Wang X, Lu X, Cai X, Huang A, Luo G, You Q, Xiang H..  (2018)  Design and synthesis of benzofuro[3,2-b]pyridin-2(1H)-one derivatives as anti-leukemia agents by inhibiting Btk and PI3Kδ..  Bioorg Med Chem,  26  (15): (4537-4543).  [PMID:30077608] [10.1016/j.bmc.2018.07.047]
38. Zhang N, Yu Z, Yang X, Zhou Y, Tang Q, Hu P, Wang J, Zhang SL, Wang MW, He Y..  (2018)  Difuran-substituted quinoxalines as a novel class of PI3Kα H1047R mutant inhibitors: Synthesis, biological evaluation and structure-activity relationship..  Eur J Med Chem,  157  (37-49).  [PMID:30071408] [10.1016/j.ejmech.2018.07.061]
39. Zhang Q, Hu X, Wan G, Wang J, Li L, Wu X, Liu Z, Yu L..  (2019)  Discovery of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives as novel tubulin polymerization inhibitors for treatment of cancer..  Eur J Med Chem,  184  (111728-111728).  [PMID:31610375] [10.1016/j.ejmech.2019.111728]
40. Wang Y, Dou X, Jiang L, Jin H, Zhang L, Zhang L, Liu Z..  (2019)  Discovery of novel glycogen synthase kinase-3α inhibitors: Structure-based virtual screening, preliminary SAR and biological evaluation for treatment of acute myeloid leukemia..  Eur J Med Chem,  171  (221-234).  [PMID:30925338] [10.1016/j.ejmech.2019.03.039]
41. Wang X, Yu C, Wang C, Ma Y, Wang T, Li Y, Huang Z, Zhou M, Sun P, Zheng J, Yang S, Fan Y, Xiang R..  (2019)  Novel cyclin-dependent kinase 9 (CDK9) inhibitor with suppression of cancer stemness activity against non-small-cell lung cancer..  Eur J Med Chem,  181  (111535-111535).  [PMID:31376566] [10.1016/j.ejmech.2019.07.038]
42. Zhao L, Li Y, Wang Y, Qiao Z, Miao Z, Yang J, Huang L, Tian C, Li L, Chen D, Yang S..  (2019)  Discovery of 4H-Chromen-4-one Derivatives as a New Class of Selective Rho Kinase (ROCK) Inhibitors, which Showed Potent Activity in ex Vivo Diabetic Retinopathy Models..  J Med Chem,  62  (23): (10691-10710).  [PMID:31693351] [10.1021/acs.jmedchem.9b01143]
43. Chen Y, Yuan X, Zhang W, Tang M, Zheng L, Wang F, Yan W, Yang S, Wei Y, He J, Chen L..  (2019)  Discovery of Novel Dual Histone Deacetylase and Mammalian Target of Rapamycin Target Inhibitors as a Promising Strategy for Cancer Therapy..  J Med Chem,  62  (3): (1577-1592).  [PMID:30629434] [10.1021/acs.jmedchem.8b01825]
44. Mahajan D,Sen S,Kuila B,Sharma A,Arora R,Sagar M,Mahapatra AR,Gawade LB,Dugar S.  (2020)  Discovery and Development of SPR519 as a Potent, Selective, and Orally Bioavailable Inhibitor of PI3Kα and mTOR Kinases for the Treatment of Solid Tumors..  J Med Chem,  63  (19): (11121-11130).  [PMID:32897703] [10.1021/acs.jmedchem.0c01061]
45. Chen D,Soh CK,Goh WH,Wang H.  (2018)  Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma..  J Med Chem,  61  (4.0): (1552-1575).  [PMID:29360358] [10.1021/acs.jmedchem.7b01465]
46. Al-Ashmawy AAK,Elokely KM,Perez-Leal O,Rico M,Gordon J,Mateo G,Omar AM,Abou-Gharbia M,Childers WE.  (2020)  Discovery and SAR of Novel Disubstituted Quinazolines as Dual PI3Kalpha/mTOR Inhibitors Targeting Breast Cancer..  ACS Med Chem Lett,  11  (11): (2156-2164).  [PMID:33214824] [10.1021/acsmedchemlett.0c00289]
47. Yang J,Chen K,Zhang G,Yang QY,Li YS,Huang SZ,Wang YL,Yang W,Jiang XJ,Yan HX,Zhu JQ,Xiang R,Luo YF,Li WM,Wei YQ,Li LL,Yang SY.  (2018)  Structural optimization and structure-activity relationship studies of N-phenyl-7,8-dihydro-6H-pyrimido[5,4-b][1,4]oxazin-4-amine derivatives as a new class of inhibitors of RET and its drug resistance mutants..  Eur J Med Chem,  143  (1148-1164).  [PMID:29133048] [10.1016/j.ejmech.2017.09.018]
48. Álvarez RM, García AB, Riesco-Fagundo C, Martín JI, Varela C, Rodríguez Hergueta A, González Cantalapiedra E, Oyarzabal J, Di Geronimo B, Lorenzo M, Albarrán MI, Cebriá A, Cebrián D, Martínez-González S, Blanco-Aparicio C, Pastor J..  (2021)  Omipalisib inspired macrocycles as dual PI3K/mTOR inhibitors..  Eur J Med Chem,  211  (113109-113109).  [PMID:33360802] [10.1016/j.ejmech.2020.113109]
49. Skolnik, E Y EY and 7 more authors..  (1991)  Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases..  Cell,    (5):   [PMID:1849461]
50. Vainikka, S S and 5 more authors..  (1994)  Signal transduction by fibroblast growth factor receptor-4 (FGFR-4). Comparison with FGFR-1..  The Journal of biological chemistry,    (15):   [PMID:7518429]
51. Gustafson, T A TA, He, W W, Craparo, A A, Schaub, C D CD and O'Neill, T J TJ..  (1995)  Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain..  Molecular and cellular biology,      [PMID:7537849]
52. Craparo, A A, O'Neill, T J TJ and Gustafson, T A TA..  (1995)  Non-SH2 domains within insulin receptor substrate-1 and SHC mediate their phosphotyrosine-dependent interaction with the NPEY motif of the insulin-like growth factor I receptor..  The Journal of biological chemistry,    (30):   [PMID:7541045]
53. Koyama, S S and 5 more authors..  (1993)  Structure of the PI3K SH3 domain and analysis of the SH3 family..  Cell,    (26):   [PMID:7681364]
54. Nishimura, R R and 6 more authors..  (1993)  Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor..  Molecular and cellular biology,      [PMID:7692233]
55. Van Horn, D J DJ, Myers, M G MG and Backer, J M JM..  (1994)  Direct activation of the phosphatidylinositol 3'-kinase by the insulin receptor..  The Journal of biological chemistry,    (7):   [PMID:8276809]
56. Nolte, R T RT, Eck, M J MJ, Schlessinger, J J, Shoelson, S E SE and Harrison, S C SC..  (1996)  Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes..  Nature structural biology,      [PMID:8599763]
57. Antonetti, D A DA, Algenstaedt, P P and Kahn, C R CR..  (1996)  Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain..  Molecular and cellular biology,      [PMID:8628286]
58. Liang, J J, Chen, J K JK, Schreiber, S T ST and Clardy, J J..  (1996)  Crystal structure of P13K SH3 domain at 20 angstroms resolution..  Journal of molecular biology,    (5):   [PMID:8648629]
59. Breeze, A L AL and 7 more authors..  (1996)  Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase..  The EMBO journal,    (15):   [PMID:8670861]
60. Yokote, K K, Margolis, B B, Heldin, C H CH and Claesson-Welsh, L L..  (1996)  Grb7 is a downstream signaling component of platelet-derived growth factor alpha- and beta-receptors..  The Journal of biological chemistry,    (29):   [PMID:8940081]
61. Renzoni, D A DA and 8 more authors..  (1996)  Structural and thermodynamic characterization of the interaction of the SH3 domain from Fyn with the proline-rich binding site on the p85 subunit of PI3-kinase..  Biochemistry,    (10):   [PMID:8961927]
62. Musacchio, A A, Cantley, L C LC and Harrison, S C SC..  (1996)  Crystal structure of the breakpoint cluster region-homology domain from phosphoinositide 3-kinase p85 alpha subunit..  Proceedings of the National Academy of Sciences of the United States of America,    (10):   [PMID:8962058]
63. Hansen, T T and 8 more authors..  (1997)  Identification of a common amino acid polymorphism in the p85alpha regulatory subunit of phosphatidylinositol 3-kinase: effects on glucose disappearance constant, glucose effectiveness, and the insulin sensitivity index..  Diabetes,      [PMID:9032108]
64. Price, D J DJ and 5 more authors..  (1997)  Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes..  The Journal of biological chemistry,    (28):   [PMID:9038210]
65. Braunger, J J and 7 more authors..  (1997)  Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site..  Oncogene,    (5):   [PMID:9178760]
66. Zhang, W W, Sloan-Lancaster, J J, Kitchen, J J, Trible, R P RP and Samelson, L E LE..  (1998)  LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation..  Cell,    (9):   [PMID:9489702]
67. Fantin, V R VR and 5 more authors..  (1998)  Characterization of insulin receptor substrate 4 in human embryonic kidney 293 cells..  The Journal of biological chemistry,    (24):   [PMID:9553137]
68. Bruyns, E E and 9 more authors..  (1998)  T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR-CD3-zeta complex, recruits intracellular signaling proteins to the plasma membrane..  The Journal of experimental medicine,    (3):   [PMID:9687533]
69. Ettenberg, S A SA and 6 more authors..  (1999)  cbl-b inhibits epidermal growth factor receptor signaling..  Oncogene,    (11):   [PMID:10086340]
70. Chang, C C and 9 more authors..  (1999)  Cutting edge: KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties..  Journal of immunology (Baltimore, Md. : 1950),    (1):   [PMID:10528161]
71. Axelsson, L L and 5 more authors..  (2000)  Clustering of beta(2)-integrins on human neutrophils activates dual signaling pathways to PtdIns 3-kinase..  Experimental cell research,    (10):   [PMID:10739672]
72. Baynes, K C KC and 9 more authors..  (2000)  Natural variants of human p85 alpha phosphoinositide 3-kinase in severe insulin resistance: a novel variant with impaired insulin-stimulated lipid kinase activity..  Diabetologia,      [PMID:10768093]
73. Kusch, A A and 6 more authors..  (2000)  Urokinase stimulates human vascular smooth muscle cell migration via a phosphatidylinositol 3-kinase-Tyk2 interaction..  The Journal of biological chemistry,    (15):   [PMID:10995743]
74. Fang, D D and 5 more authors..  (2001)  Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells..  The Journal of biological chemistry,    (16):   [PMID:11087752]
75. Fang, D D and Liu, Y C YC..  (2001)  Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells..  Nature immunology,      [PMID:11526404]
76. Pauptit, R A RA and 6 more authors..  (2001)  NMR trial models: experiences with the colicin immunity protein Im7 and the p85alpha C-terminal SH2-peptide complex..  Acta crystallographica. Section D, Biological crystallography,      [PMID:11567151]
77. Sano, Hiroyuki H, Liu, Simon C H SC, Lane, William S WS, Piletz, John E JE and Lienhard, Gustav E GE..  (2002)  Insulin receptor substrate 4 associates with the protein IRAS..  The Journal of biological chemistry,    (31):   [PMID:11912194]
78. Linnemann, Thomas T, Zheng, Yong-Hui YH, Mandic, Robert R and Peterlin, B Matija BM..  (2002)  Interaction between Nef and phosphatidylinositol-3-kinase leads to activation of p21-activated kinase and increased production of HIV..  Virology,    (15):   [PMID:12009866]
79. He, Yupeng Y and 7 more authors..  (2002)  Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase..  Journal of virology,      [PMID:12186904]
80. Zhu, Minghua M, Janssen, Erin E, Leung, Kin K and Zhang, Weiguo W..  (2002)  Molecular cloning of a novel gene encoding a membrane-associated adaptor protein (LAX) in lymphocyte signaling..  The Journal of biological chemistry,    (29):   [PMID:12359715]
81. Laurent, Charles E CE and Smithgall, Thomas E TE..  (2004)  The c-Fes tyrosine kinase cooperates with the breakpoint cluster region protein (Bcr) to induce neurite extension in a Rac- and Cdc42-dependent manner..  Experimental cell research,    (10):   [PMID:15302586]
82. Schmutz, Jeremy J and 75 more authors..  (2004)  The DNA sequence and comparative analysis of human chromosome 5..  Nature,    (16):   [PMID:15372022]
83. Tacconelli, Antonella A and 11 more authors..  (2004)  TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma..  Cancer cell,      [PMID:15488758]
84. Rönnstrand, L L..  (2004)  Signal transduction via the stem cell factor receptor/c-Kit..  Cellular and molecular life sciences : CMLS,      [PMID:15526160]
85. Continolo, Silvia S and 6 more authors..  (2005)  The proto-oncogene Fgr regulates cell migration and this requires its plasma membrane localization..  Experimental cell research,    (15):   [PMID:15561106]
86. Rush, John J and 9 more authors..  (2005)  Immunoaffinity profiling of tyrosine phosphorylation in cancer cells..  Nature biotechnology,      [PMID:15592455]
87. Eswarakumar, V P VP, Lax, I I and Schlessinger, J J..  (2005)  Cellular signaling by fibroblast growth factor receptors..  Cytokine & growth factor reviews,      [PMID:15863030]
88. Doukas, John J and 9 more authors..  (2006)  Phosphoinositide 3-kinase gamma/delta inhibition limits infarct size after myocardial ischemia/reperfusion injury..  Proceedings of the National Academy of Sciences of the United States of America,    (26):   [PMID:17172449]
89. Miled, Nabil N and 9 more authors..  (2007)  Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit..  Science (New York, N.Y.),    (13):   [PMID:17626883]
90. Huang, Chuan-Hsiang CH and 8 more authors..  (2007)  The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations..  Science (New York, N.Y.),    (14):   [PMID:18079394]
91. Tsuboi, Nobuo N and 6 more authors..  (2008)  The tyrosine phosphatase CD148 interacts with the p85 regulatory subunit of phosphoinositide 3-kinase..  The Biochemical journal,    (1):   [PMID:18348712]
92. Kaushansky, Alexis A and 5 more authors..  (2008)  System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties..  Chemistry & biology,    (25):   [PMID:18721752]
93. Salazar, Lisa L and 6 more authors..  (2009)  A novel interaction between fibroblast growth factor receptor 3 and the p85 subunit of phosphoinositide 3-kinase: activation-dependent regulation of ERK by p85 in multiple myeloma cells..  Human molecular genetics,    (1):   [PMID:19286672]
94. Mayya, Viveka V and 7 more authors..  (2009)  Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions..  Science signaling,    (18):   [PMID:19690332]
95. Mandelker, Diana D and 8 more authors..  (2009)  A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane..  Proceedings of the National Academy of Sciences of the United States of America,    (6):   [PMID:19805105]
96. Voss, Matthias M, Lettau, Marcus M and Janssen, Ottmar O..  (2009)  Identification of SH3 domain interaction partners of human FasL (CD178) by phage display screening..  BMC immunology,    (6):   [PMID:19807924]
97. Winnay, Jonathon N JN, Boucher, Jeremie J, Mori, Marcelo A MA, Ueki, Kohjiro K and Kahn, C Ronald CR..  (2010)  A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response..  Nature medicine,      [PMID:20348923]
98. Ha, Yun Jung YJ, Seul, Hee Jung HJ and Lee, Jong Ran JR..  (2011)  Ligation of CD40 receptor in human B lymphocytes triggers the 5-lipoxygenase pathway to produce reactive oxygen species and activate p38 MAPK..  Experimental & molecular medicine,    (28):   [PMID:21200133]
99. Wagner, Melany J MJ and Smiley, James R JR..  (2011)  Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling..  Journal of virology,      [PMID:21228233]
100. Lin, Changsheng C and 8 more authors..  (2011)  Tyrosine phosphorylation of the Gα-interacting protein GIV promotes activation of phosphoinositide 3-kinase during cell migration..  Science signaling,    (27):   [PMID:21954290]
101. Conley, Mary Ellen ME and 8 more authors..  (2012)  Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K..  The Journal of experimental medicine,    (12):   [PMID:22351933]
102. Van Damme, Petra P and 15 more authors..  (2012)  N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB..  Proceedings of the National Academy of Sciences of the United States of America,    (31):   [PMID:22814378]
103. Zhou, Houjiang H and 6 more authors..  (2013)  Toward a comprehensive characterization of a human cancer cell phosphoproteome..  Journal of proteome research,    (4):   [PMID:23186163]
104. Liu, XueQiao X and Cohen, Jeffrey I JI..  (2013)  Varicella-zoster virus ORF12 protein activates the phosphatidylinositol 3-kinase/Akt pathway to regulate cell cycle progression..  Journal of virology,      [PMID:23192871]
105. Cipriano, Rocky R and 5 more authors..  (2013)  FAM83B-mediated activation of PI3K/AKT and MAPK signaling cooperates to promote epithelial cell transformation and resistance to targeted therapies..  Oncotarget,      [PMID:23676467]
106. Thauvin-Robinet, Christel C and 27 more authors..  (2013)  PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy..  American journal of human genetics,    (11):   [PMID:23810378]
107. Chudasama, Kishan Kumar KK and 12 more authors..  (2013)  SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling..  American journal of human genetics,    (11):   [PMID:23810379]
108. Dyment, David A DA and 19 more authors..  (2013)  Mutations in PIK3R1 cause SHORT syndrome..  American journal of human genetics,    (11):   [PMID:23810382]
109. Zhang, Zhao Z and 10 more authors..  (2016)  Insulin resistance and diabetes caused by genetic or diet-induced KBTBD2 deficiency in mice..  Proceedings of the National Academy of Sciences of the United States of America,    (18):   [PMID:27708159]
110. Lu, Yilu Y and 7 more authors..  (2017)  Cancer/testis antigen PIWIL2 suppresses circadian rhythms by regulating the stability and activity of BMAL1 and CLOCK..  Oncotarget,    (15):   [PMID:28903391]
111. Lee, Jiyoun J and 6 more authors..  (2017)  C1-Ten is a PTPase of nephrin, regulating podocyte hypertrophy through mTORC1 activation..  Scientific reports,    (27):   [PMID:28955049]

Solution Calculators