RIP3 Mouse mAb - Primary antibody, specific to RIPK3, Mouse IgG1

    Application:
  • WB
Features and benefits
  • Host species: Mouse
  • Species reactivity(Reacts with): Human
  • Isotype: Mouse IgG1
  • Clone Number: 2013CT892.86.49
  • Conjugation: Unconjugated
Item Number
Ab125423
Grouped product items
SKUSizeAvailabilityPrice Qty
Ab125423-10μl
10μl
In stock
$66.90
Ab125423-50μl
50μl
In stock
$199.90
Ab125423-100μl
100μl
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$299.90
Ab125423-1ml
1ml
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$2,399.90

mAb (2013CT892.86.49); Mouse anti Human RIP3 Antibody; WB; Unconjugated

Basic Description

Product NameRIP3 Mouse mAb - Primary antibody, specific to RIPK3, Mouse IgG1
SynonymsEC 2.7.11.1 | Receptor Interacting Serine/Threonine Kinase 3 | Receptor-interacting protein 3 | receptor-interacting serine/threonine-protein kinase 3 | receptor-interacting serine-threonine kinase 3 | RIP3 | RIP-3 | RIPK3 | RIP-like protein kinase 3 | Re
Specifications & PurityExactAb™, Validated, Carrier Free, 0.5 mg/mL
Biochemical and Physiological MechanismsPromotes apoptosis.
Host speciesMouse
SpecificityRIPK3
ImmunogenRecombinate protein from the human region of human RIPK3 expressed in E.coli (AA 20-280)
Positive ControlWB: HT-29, Jurkat, THP-1, K562, U937, NIH/3T3 and C6 cell lysates.
ConjugationUnconjugated
GradeCarrier Free, ExactAb™, Validated
Product Description

Mouse anti human RIP3 Antibody, Monoclonal (2013CT892.86.49), could be used for WB and so on. 

Product Properties

IsotypeMouse IgG1
Light Chain Typekappa
SDS-PAGE150 kDa
Purification MethodProtein G purified
FormLiquid
Concentration0.5 mg/mL
Storage TempStore at -20°C,Avoid repeated freezing and thawing
Shipped InIce chest + Ice pads
Stability And StorageShipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C long term. Avoid freeze / thaw cycle.

Images

RIP3 Mouse mAb (Ab125423) - Western Blot
All lanes: RIP3 Mouse mAb (Ab125423) at 1/1000 dilution
Samples: Lysates at 20 µg per lane
Secondary: Goat Anti-Mouse IgG H&L (HRP) (Ab138040) at 1/20000 dilution

Predicted band size: 57 kDa
Observed band size: 59 kDa
Exposure time: 6.7 s


Associated Targets(Human)

RIPK3 Tchem Receptor-interacting serine/threonine-protein kinase 3 (0 Activities)
Activity TypeActivity Value -log(M)Mechanism of ActionActivity ReferencePublications (PubMed IDs)

Mechanisms of Action

Mechanism of ActionAction Typetarget IDTarget NameTarget TypeTarget OrganismBinding Site NameReferences

Application

ApplicationDilution info
WB 1/1000

">

1/1000

Certificates

C of A & Other Certificates(BSE/TSE, COO)

Find and download the COA for your product by matching the lot number on the packaging.

2 results found

Lot NumberCertificate TypeDateItem
ZJ24F0202786Certificate of AnalysisFeb 23, 2024 Ab125423
ZJ24F0202785Certificate of AnalysisFeb 23, 2024 Ab125423

Related Documents

References

1. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C et al..  (2007)  Patterns of somatic mutation in human cancer genomes..  Nature,  446  (7132): (153-8).  [PMID:17344846] [10.1021/op500134e]
2. Haile PA, Votta BJ, Marquis RW, Bury MJ, Mehlmann JF, Singhaus Jr R, Charnley AK, Lakdawala AS, Convery MA, Lipshutz DB et al..  (2016)  The Identification and Pharmacological Characterization of 6-(tert-Butylsulfonyl)-N-(5-fluoro-1H-indazol-3-yl)quinolin-4-amine (GSK583), a Highly Potent and Selective Inhibitor of RIP2 Kinase..  J Med Chem,  59  (10): (4867-80).  [PMID:27109867] [10.1021/op500134e]
3. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK.  (2009)  Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation..  Cell,  137  (6): (1112-23).  [PMID:19524513] [10.1021/op500134e]
4. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X.  (2009)  Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha..  Cell,  137  (6): (1100-11).  [PMID:19524512] [10.1021/op500134e]
5. Ren Y, Su Y, Sun L, He S, Meng L, Liao D, Liu X, Ma Y, Liu C, Li S et al..  (2017)  Discovery of a Highly Potent, Selective, and Metabolically Stable Inhibitor of Receptor-Interacting Protein 1 (RIP1) for the Treatment of Systemic Inflammatory Response Syndrome..  J Med Chem,  60  (3): (972-986).  [PMID:27992216] [10.1021/op500134e]
6. Tan L, Gurbani D, Weisberg EL, Jones DS, Rao S, Singer WD, Bernard FM, Mowafy S, Jenney A, Du G et al..  (2017)  Studies of TAK1-centered polypharmacology with novel covalent TAK1 inhibitors..  Bioorg Med Chem,  25  (4): (1320-1328).  [PMID:28038940] [10.1021/op500134e]
7. Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL, Nogusa S, Shah S, Saleh D, Gough PJ, Bertin J et al..  (2015)  Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1..  Cell Rep,  10  (11): (1850-60).  [PMID:25801024] [10.1021/op500134e]
8. Li Y, Xiong Y, Zhang G, Zhang L, Yang W, Yang J, Huang L, Qiao Z, Miao Z, Lin G et al..  (2018)  Identification of 5-(2,3-Dihydro-1 H-indol-5-yl)-7 H-pyrrolo[2,3- d]pyrimidin-4-amine Derivatives as a New Class of Receptor-Interacting Protein Kinase 1 (RIPK1) Inhibitors, Which Showed Potent Activity in a Tumor Metastasis Model..  J Med Chem,  61  (24): (11398-11414).  [PMID:30480444] [10.1021/op500134e]
9. Chen X, Zhuang C, Ren Y, Zhang H, Qin X, Hu L, Fu J, Miao Z, Chai Y, Liu ZG et al..  (2019)  Identification of the Raf kinase inhibitor TAK-632 and its analogues as potent inhibitors of necroptosis by targeting RIPK1 and RIPK3..  Br J Pharmacol,  176  (12): (2095-2108).  [PMID:30825190] [10.1021/op500134e]
10. Zhang H, Xu L, Qin X, Chen X, Cong H, Hu L, Chen L, Miao Z, Zhang W, Cai Z et al..  (2019)  N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK-632) Analogues as Novel Necroptosis Inhibitors by Targeting Receptor-Interacting Protein Kinase 3 (RIPK3): Synthesis, Structure-Activity Relationships, and in Vivo Efficacy..  J Med Chem,  62  (14): (6665-6681).  [PMID:31095385] [10.1021/op500134e]
11. Sunose M, Bell K, Ellard K, Bergamini G, Neubauer G, Werner T, Ramsden N..  (2012)  Discovery of 5-(2-amino-[1,2,4]triazolo[1,5-a]pyridin-7-yl)-N-(tert-butyl)pyridine-3-sulfonamide (CZC24758), as a potent, orally bioavailable and selective inhibitor of PI3K for the treatment of inflammatory disease..  Bioorg Med Chem Lett,  22  (14): (4613-4618).  [PMID:22726925] [10.1016/j.bmcl.2012.05.090]
12. Charnley AK, Convery MA, Lakdawala Shah A, Jones E, Hardwicke P, Bridges A, Ouellette M, Totoritis R, Schwartz B, King BW, Wisnoski DD, Kang J, Eidam PM, Votta BJ, Gough PJ, Marquis RW, Bertin J, Casillas L..  (2015)  Crystal structures of human RIP2 kinase catalytic domain complexed with ATP-competitive inhibitors: Foundations for understanding inhibitor selectivity..  Bioorg Med Chem,  23  (21): (7000-7006).  [PMID:26455654] [10.1016/j.bmc.2015.09.038]
13. Klaeger S, Heinzlmeir S and Wilhelm M et al.  (2017)  The target landscape of clinical kinase drugs..  Science,  358  (6367):   [PMID:29191878] [10.1126/science.aan4368]
14. Argyros O, Lougiakis N, Kouvari E, Papafotika A, Raptopoulou CP, Psycharis V, Christoforidis S, Pouli N, Marakos P, Tamvakopoulos C..  (2017)  Design and synthesis of novel 7-aminosubstituted pyrido[2,3-b]pyrazines exhibiting anti-breast cancer activity..  Eur J Med Chem,  126  (954-968).  [PMID:28006668] [10.1016/j.ejmech.2016.12.025]
15. Yoshikawa M, Saitoh M, Katoh T, Seki T, Bigi SV, Shimizu Y, Ishii T, Okai T, Kuno M, Hattori H, Watanabe E, Saikatendu KS, Zou H, Nakakariya M, Tatamiya T, Nakada Y, Yogo T..  (2018)  Discovery of 7-Oxo-2,4,5,7-tetrahydro-6 H-pyrazolo[3,4- c]pyridine Derivatives as Potent, Orally Available, and Brain-Penetrating Receptor Interacting Protein 1 (RIP1) Kinase Inhibitors: Analysis of Structure-Kinetic Relationships..  J Med Chem,  61  (6): (2384-2409).  [PMID:29485864] [10.1021/acs.jmedchem.7b01647]
16. Smith GP, Badolo L, Chell V, Chen IJ, Christensen KV, David L, Daechsel JA, Hentzer M, Herzig MC, Mikkelsen GK, Watson SP, Williamson DS..  (2017)  The design and SAR of a novel series of 2-aminopyridine based LRRK2 inhibitors..  Bioorg Med Chem Lett,  27  (18): (4500-4505).  [PMID:28802631] [10.1016/j.bmcl.2017.07.072]
17. Narayan S, Ramisetti S, Jaiswal AS, Law BK, Singh-Pillay A, Singh P, Amin S, Sharma AK..  (2019)  ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells..  Eur J Med Chem,  161  (456-467).  [PMID:30384048] [10.1016/j.ejmech.2018.10.052]
18. Zhuang C, Chen F..  (2020)  Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives..  J Med Chem,  63  (4): (1490-1510).  [PMID:31622096] [10.1021/acs.jmedchem.9b01317]
19. Yu, P W PW and 8 more authors..  (1999)  Identification of RIP3, a RIP-like kinase that activates apoptosis and NFkappaB..  Current biology : CB,    (20):   [PMID:10339433]
20. Sun, X X and 5 more authors..  (1999)  RIP3, a novel apoptosis-inducing kinase..  The Journal of biological chemistry,    (11):   [PMID:10358032]
21. Sun, Xiaoqing X, Yin, Jianping J, Starovasnik, Melissa A MA, Fairbrother, Wayne J WJ and Dixit, Vishva M VM..  (2002)  Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3..  The Journal of biological chemistry,    (15):   [PMID:11734559]
22. Heilig, Roland R and 98 more authors..  (2003)  The DNA sequence and analysis of human chromosome 14..  Nature,    (6):   [PMID:12508121]
23. Yang, Yonghui Y, Hu, Weiping W, Feng, Shanshan S, Ma, Jun J and Wu, Mian M..  (2005)  RIP3 beta and RIP3 gamma, two novel splice variants of receptor-interacting protein 3 (RIP3), downregulate RIP3-induced apoptosis..  Biochemical and biophysical research communications,    (24):   [PMID:15896315]
24. Vandenabeele, Peter P, Declercq, Wim W, Van Herreweghe, Franky F and Vanden Berghe, Tom T..  (2010)  The role of the kinases RIP1 and RIP3 in TNF-induced necrosis..  Science signaling,    (30):   [PMID:20354226]
25. Zhao, Yun Y and 10 more authors..  (2012)  Control of NOD2 and Rip2-dependent innate immune activation by GEF-H1..  Inflammatory bowel diseases,      [PMID:21887730]
26. Bertrand, Mathieu J M MJ and 8 more authors..  (2011)  cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4)..  PloS one,      [PMID:21931591]
27. Sun, Liming L and 10 more authors..  (2012)  Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase..  Cell,    (20):   [PMID:22265413]
28. Wang, Zhigao Z, Jiang, Hui H, Chen, She S, Du, Fenghe F and Wang, Xiaodong X..  (2012)  The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways..  Cell,    (20):   [PMID:22265414]
29. Zhao, Jie J and 6 more authors..  (2012)  Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis..  Proceedings of the National Academy of Sciences of the United States of America,    (3):   [PMID:22421439]
30. Guo, Hongyan H and 7 more authors..  (2015)  Herpes simplex virus suppresses necroptosis in human cells..  Cell host & microbe,    (11):   [PMID:25674983]
31. Mompeán, Miguel M and 7 more authors..  (2018)  The Structure of the Necrosome RIPK1-RIPK3 Core, a Human Hetero-Amyloid Signaling Complex..  Cell,    (17):   [PMID:29681455]
32. Choi, Seung-Won SW and 10 more authors..  (2018)  PELI1 Selectively Targets Kinase-Active RIP3 for Ubiquitylation-Dependent Proteasomal Degradation..  Molecular cell,    (7):   [PMID:29883609]
33. May-Dracka TL,Arduini R,Bertolotti-Ciarlet A,Bhisetti G,Brickelmaier M,Cahir-McFarland E,Enyedy I,Fontenot JD,Hesson T,Little K,Lyssikatos J,Marcotte D,McKee T,Murugan P,Patterson T,Peng H,Rushe M,Silvian L,Spilker K,Wu P,Xin Z,Burkly LC.  (2018)  Investigating small molecules to inhibit germinal center kinase-like kinase (GLK/MAP4K3) upstream of PKCθ phosphorylation: Potential therapy to modulate T cell dependent immunity..  Bioorg Med Chem Lett,  28  (10): (1964-1971).  [PMID:29636220] [10.1016/j.bmcl.2018.03.032]

Solution Calculators