Determine the necessary mass, volume, or concentration for preparing a solution.
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
SKU | Size | Availability | Price | Qty |
---|---|---|---|---|
T135258-1mg | 1mg | Available within 4-8 weeks(?) Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience! | $98.90 | |
T135258-5mg | 5mg | Available within 4-8 weeks(?) Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience! | $276.90 | |
T135258-10mg | 10mg | Available within 4-8 weeks(?) Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience! | $444.90 |
Ca 2+ -ATPase inhibitor
Synonyms | (-)-Thapsigargin | NCGC00162381-06 | Octanoic Acid [3s-[3alpha, 3abeta, 4alpha,6beta, 6abeta, 7beta, 8alpha(Z), 9balpha]]-6-(Acetyloxy)-2,3,-3a,4,5,6,6a,7,8,9b-Decahydro-3,3a-Dihydroxy-3,6,9-Trimethyl-8-[(2-Methyl-1-Oxo-2-Butenyl)oxy]-2-Oxo-4-(1-Oxobutoxy |
---|---|
Specifications & Purity | Moligand™, ≥95% |
Biochemical and Physiological Mechanisms | Potent, cell-permeable, IP3-independent intracellular calcium releaser. Blocks the transient increase in intracellular Ca2+ induced by angiostatin and endostatin. Induces apoptosis by disrupting intracellular free Ca2+ levels; incorporated into chemothera |
Storage Temp | Protected from light,Store at -20°C,Argon charged |
Shipped In | Ice chest + Ice pads |
Grade | Moligand™ |
Note | Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20°C. Generally, these will be useable for up to one month. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour. Need more advice on solubility, usage and handling? Please visit our frequently asked questions (FAQ) page for more details. |
Product Description | Thapsigargin is a cell-permeable sesquiterpene lactone found in the roots of Thapsia garganica. It is a tumor promoter and induces the release of intracellular stored Ca2+ without hydrolysis of inositolphospholipids via inhibition of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA; IC50=30 nM). It may be used to distinguish between discrete intracellular Ca2+ pools. Thapsigargin-induced tumor promotion and down regulation of the EGF receptor is independent of protein kinase C activation. |
Activity Type | Activity Value -log(M) | Mechanism of Action | Activity Reference | Publications (PubMed IDs) |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Mechanism of Action | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | References |
---|
IUPAC Name | [(3S,3aR,4S,6S,6aR,7S,8S,9bS)-6-acetyloxy-4-butanoyloxy-3,3a-dihydroxy-3,6,9-trimethyl-8-[(Z)-2-methylbut-2-enoyl]oxy-2-oxo-4,5,6a,7,8,9b-hexahydroazuleno[4,5-b]furan-7-yl] octanoate |
---|---|
INCHI | InChI=1S/C34H50O12/c1-9-12-13-14-15-17-24(37)43-28-26-25(20(5)27(28)44-30(38)19(4)11-3)29-34(41,33(8,40)31(39)45-29)22(42-23(36)16-10-2)18-32(26,7)46-21(6)35/h11,22,26-29,40-41H,9-10,12-18H2,1-8H3/b19-11-/t22-,26+,27-,28-,29-,32-,33+,34+/m0/s1 |
InChi Key | IXFPJGBNCFXKPI-FSIHEZPISA-N |
Canonical SMILES | CCCCCCCC(=O)OC1C2C(=C(C1OC(=O)C(=CC)C)C)C3C(C(CC2(C)OC(=O)C)OC(=O)CCC)(C(C(=O)O3)(C)O)O |
Isomeric SMILES | CCCCCCCC(=O)O[C@H]1[C@H]2C(=C([C@@H]1OC(=O)/C(=C\C)/C)C)[C@H]3[C@]([C@H](C[C@]2(C)OC(=O)C)OC(=O)CCC)([C@](C(=O)O3)(C)O)O |
WGK Germany | 3 |
PubChem CID | 446378 |
Molecular Weight | 650.75 |
Wikipedia | Thapsigargin |
---|---|
CAS Registry No. | 67526-95-8 |
ChEBI | CHEBI:9516 |
PubChem CID | 446378 |
ChEMBL Ligand | CHEMBL96926 |
RCSB PDB Ligand | TG1 |
Enter Lot Number to search for COA:
Find and download the COA for your product by matching the lot number on the packaging.
Lot Number | Certificate Type | Date | Item |
---|---|---|---|
L2403115 | Certificate of Analysis | Dec 09, 2024 | T135258 |
H2330579 | Certificate of Analysis | Aug 17, 2023 | T135258 |
H2330580 | Certificate of Analysis | Aug 17, 2023 | T135258 |
I2021077 | Certificate of Analysis | Aug 05, 2022 | T135258 |
I2021076 | Certificate of Analysis | Aug 05, 2022 | T135258 |
A2309412 | Certificate of Analysis | Sep 29, 2021 | T135258 |
K2113551 | Certificate of Analysis | Sep 29, 2021 | T135258 |
K2113552 | Certificate of Analysis | Sep 29, 2021 | T135258 |
K2113553 | Certificate of Analysis | Sep 29, 2021 | T135258 |
L2403116 | Certificate of Analysis | Sep 29, 2021 | T135258 |
Solubility | Soluble in DMSO (20 mg/ml), ethanol (20 mg/ml), and acetone |
---|---|
Sensitivity | Light sensitive;Moisture sensitive |
Pictogram(s) | GHS08, GHS07 |
---|---|
Signal | Danger |
Hazard Statements | H315:Causes skin irritation H319:Causes serious eye irritation H335:May cause respiratory irritation H334:May cause allergy or asthma symptoms or breathing difficulties if inhaled |
Precautionary Statements | P261:Avoid breathing dust/fume/gas/mist/vapors/spray. P305+P351+P338:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do - continue rinsing. P342+P311:IF experiencing respiratory symptoms: Call a POISON CENTER/doctor/... |
WGK Germany | 3 |
1. Gao Xiu Kui, Sheng Zu Kang, Lu Ye Hong, Sun Yu Ting, Rao Xi Sheng, Shi Lin Jing, Cong Xiao Xia, Chen Xiao, Wu Hao Bo, Huang Man, Zheng Qiang, Guo Jian-sheng, Jiang Liang Jun, Zheng Li Ling, Zhou Yi Ting. (2023) VAPB-mediated ER-targeting stabilizes IRS-1 signalosomes to regulate insulin/IGF signaling. Cell Discovery, 9 (1): (1-18). [PMID:37528084] [10.1038/s41421-023-00576-6] |
2. Weibo Zhang, Shucheng Zhang, Chong Chen, Ning Liu, Dong Yang, Pengjie Wang, Fazheng Ren. (2022) The internalization mechanisms and trafficking of the pea albumin in Caco-2 cells. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 217 (111). [PMID:35764167] [10.1016/j.ijbiomac.2022.06.149] |
3. Ziming Zheng, Xianglin Pan, Haoyu Wang, Zhijing Wu, Mitchell A. Sullivan, Yuxuan Liu, Junxi Liu, Kaiping Wang, Yu Zhang. (2021) Mechanism of Lentinan Intestinal Absorption: Clathrin-Mediated Endocytosis and Macropinocytosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 69 (26): (7344–7352). [PMID:34132531] [10.1021/acs.jafc.1c00349] |
1. Corman A et al.. (2021) A chemical screen for modulators of mRNA translation identifies a distinct mechanism of toxicity for sphingosine kinase inhibitors.. PLoS Biol, 19 (5): (e3001263). [PMID:34033645] [https://pubmed.ncbi.nlm.nih.gov/34033645] |
2. Ye Z et al.. (2021) Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation.. Nat Commun, 12 (907). [PMID:33568645] |
3. Gupta K et al.. (2020) Bile canaliculi contract autonomously by releasing calcium into hepatocytes via mechanosensitive calcium channel.. Biomaterials, 259 (120283). [PMID:32827796] |
4. Zhu M et al.. (2017) Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer.. Cell Death Dis, 8 (7): (e2938). [PMID:28726786] |
5. Zhu E et al.. (2019) Classical Swine Fever Virus Infection Induces Endoplasmic Reticulum Stress-Mediated Autophagy to Sustain Viral Replication in vivo and in vitro.. Front Microbiol, 10 (2545). [PMID:31798542] |
6. Fukushima T et al.. (2019) Discrimination of Dormant and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic Calcium.. Cell Rep, 29 (12): (4144-4158.e7). [PMID:31851939] |
7. Heise N et al.. (2011) Effect of dexamethasone on Na+/Ca2+ exchanger in dendritic cells.. Am J Physiol Cell Physiol, 300 (6): (C1306-13). [PMID:21307349] |
8. Habib P et al.. (2019) EPO and TMBIM3/GRINA Promote the Activation of the Adaptive Arm and Counteract the Terminal Arm of the Unfolded Protein Response after Murine Transient Cerebral Ischemia.. Int J Mol Sci, 20 (21): [PMID:31683519] |
9. Klann K et al.. (2020) Functional Translatome Proteomics Reveal Converging and Dose-Dependent Regulation by mTORC1 and eIF2a.. Mol Cell, 77 (4): (913-925.e4). [PMID:31812349] |
10. Vella SA et al.. (2020) Genetic Indicators for Calcium Signaling Studies in Toxoplasma gondii.. Methods Mol Biol, 2071 (187-207). [PMID:31758454] |
11. Nava MM et al.. (2020) Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage.. Cell, 181 (4): (800-817.e22). [PMID:32302590] |
12. Abdoul-Azize S et al.. (2017) Improvement of dexamethasone sensitivity by chelation of intracellular Ca2+ in pediatric acute lymphoblastic leukemia cells through the prosurvival kinase ERK1/2 deactivation.. Oncotarget, 8 (16): (27339-27352). [PMID:28423696] |
13. Wang S et al.. (2020) Induction of the Unfolded Protein Response during Bovine Alphaherpesvirus 1 Infection.. Viruses, 12 (9): [PMID:32887282] |
14. Casas-Rua V et al.. (2013) Inhibition of STIM1 phosphorylation underlies resveratrol-induced inhibition of store-operated calcium entry.. Biochem Pharmacol, 86 (11): (1555-63). [PMID:24095720] |
15. Bae E et al.. (2022) Integrin a3ß1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis.. Nat Commun, 13 (4268). [PMID:35879332] |
16. Fan C et al.. (2020) Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage.. Stem Cell Res Ther, 11 (442). [PMID:33059742] |
17. Masson SWC et al.. (2017) Mitochondrial glycerol 3-phosphate facilitates bumblebee pre-flight thermogenesis.. Sci Rep, 7 (13107). [PMID:29026172] |
18. Waldeck-Weiermair M et al.. (2013) Molecularly distinct routes of mitochondrial Ca2+ uptake are activated depending on the activity of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA).. J Biol Chem, 288 (21): (15367-79). [PMID:23592775] |
19. Yang H et al.. (2019) MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint.. Autophagy, (1-18). [PMID:31007149] |
20. Liang W et al.. (2021) Necroptosis activates UPR sensors without disrupting their binding with GRP78.. Proc Natl Acad Sci U S A, 118 (39): [PMID:34544877] |
21. Saxena S et al.. (2013) Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival.. Neuron, 80 (80-96). [PMID:24094105] |
22. Mahameed M et al.. (2020) Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy.. Nat Commun, 11 (1304). [PMID:32161259] |
23. Pozo-Guisado E et al.. (2013) Phosphorylation of STIM1 at ERK1/2 target sites regulates interaction with the microtubule plus-end binding protein EB1.. J Cell Sci, 126 (Pt 14): (3170-80). [PMID:23687376] |
24. Parafati M et al.. (2020) Pluripotent Stem Cell-Derived Hepatocytes Phenotypic Screening Reveals Small Molecules Targeting the CDK2/4-C/EBPa/DGAT2 Pathway Preventing ER-Stress Induced Lipid Accumulation.. Int J Mol Sci, 21 (24): [PMID:33334026] |
25. Zhou Y et al.. (2016) Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK-15 Cells.. Viruses, 8 (2): [PMID:26907328] |
26. Gu Y et al.. (2016) Porcine Circovirus Type 2 Activates CaMMKß to Initiate Autophagy in PK-15 Cells by Increasing Cytosolic Calcium.. Viruses, 8 (5): [PMID:27213427] |
27. Zhang M et al.. (2018) Prevention of Injury-Induced Osteoarthritis in Rodent Temporomandibular Joint by Targeting Chondrocyte CaSR.. J Bone Miner Res, [PMID:30496623] |
28. Zhang P et al.. (2022) Protein C receptor maintains cancer stem cell properties via activating lipid synthesis in nasopharyngeal carcinoma.. Signal Transduct Target Ther, 7 (46). [PMID:35169126] |
29. Wendimu MY et al.. (2021) RGS10 physically and functionally interacts with STIM2 and requires store-operated calcium entry to regulate pro-inflammatory gene expression in microglia.. Cell Signal, 83 (109974). [PMID:33705894] |
30. Qiu K et al.. (2022) Ryanodine receptor RyR1-mediated elevation of Ca2+ concentration is required for the late stage of myogenic differentiation and fusion.. J Anim Sci Biotechnol, 13 (9). [PMID:35144690] |
31. Jonas KC et al.. (2018) Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers.. Sci Rep, 8 (2239). [PMID:29396488] |
32. Duan J et al.. (2019) The cell-wide web coordinates cellular processes by directing site-specific Ca2+ flux across cytoplasmic nanocourses.. Nat Commun, 10 (2299). [PMID:31127110] |
33. Obiedat A et al.. (2020) The integrated stress response promotes B7H6 expression.. J Mol Med (Berl), 98 (135-148). [PMID:31838577] |
34. Thangthaeng N et al.. (2018) Walnut extract modulates activation of microglia through alteration in intracellular calcium concentration.. Nutr Res, 49 (88-95). [PMID:29420996] |
35. Gao Xiu Kui, Sheng Zu Kang, Lu Ye Hong, Sun Yu Ting, Rao Xi Sheng, Shi Lin Jing, Cong Xiao Xia, Chen Xiao, Wu Hao Bo, Huang Man, Zheng Qiang, Guo Jian-sheng, Jiang Liang Jun, Zheng Li Ling, Zhou Yi Ting. (2023) VAPB-mediated ER-targeting stabilizes IRS-1 signalosomes to regulate insulin/IGF signaling. Cell Discovery, 9 (1): (1-18). [PMID:37528084] [10.1038/s41421-023-00576-6] |
36. Weibo Zhang, Shucheng Zhang, Chong Chen, Ning Liu, Dong Yang, Pengjie Wang, Fazheng Ren. (2022) The internalization mechanisms and trafficking of the pea albumin in Caco-2 cells. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 217 (111). [PMID:35764167] [10.1016/j.ijbiomac.2022.06.149] |
37. Ziming Zheng, Xianglin Pan, Haoyu Wang, Zhijing Wu, Mitchell A. Sullivan, Yuxuan Liu, Junxi Liu, Kaiping Wang, Yu Zhang. (2021) Mechanism of Lentinan Intestinal Absorption: Clathrin-Mediated Endocytosis and Macropinocytosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 69 (26): (7344–7352). [PMID:34132531] [10.1021/acs.jafc.1c00349] |